题目表述
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1
图2
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
1.程序如下
#include <stdio.h>
#define MaxTree 10
#define ElementType char
#define Tree int
#define Null -1
struct TreeNode{
ElementType Element;
Tree Left;
Tree Right;
}T1[MaxTree], T2[MaxTree];
Tree BuildTree(struct TreeNode T[]){
int N;
int i, Root;
scanf("%d\n", &N); //注意 \n 不可去掉,否则在输入环节报错
if(N){
char cl, cr;
int check[MaxTree];
for(i=0; i<N; i++)
//用于找出根节点,在最后
//当check[i]=0是,说明i结点不是任何结点的子节点,即为根节点
//当check[i]=1时,说明i结点是某一结点的子节点,不为根节点
check[i] = 0;
for(i=0; i<N; i++){
//注意 \n 不可去掉,否则在输入环节报错
//注意 中间的空格也不可去掉, 否则输入环节报错
scanf("%c %c %c\n", &T[i].Element, &cl, &cr);
if(cl != '-'){
T[i].Left = cl - '0';
check[T[i].Left] = 1;
}
else T[i].Left = Null;
if(cr != '-'){
T[i].Right = cr - '0';
check[T[i].Right] = 1;
}
else T[i].Right = Null;
}
for(i=0; i<N; i++) /* 寻找根节点 */
if(!check[i]) break;
Root=i; /* T[i]中没有任何结点的 left 和 Right指向,这个结点就是根节点*/
}
else if(N == 0) return Null;
return Root;
}
int Isomorphic(Tree R1, Tree R2){
if((R1==Null) && (R2==Null))
return 1;
if(((R1==Null) && (R2!=Null)) || ((R1!=Null) && (R2==Null)))
return 0;
if(T1[R1].Element != T2[R2].Element) /* 根不一样 */
return 0;
if((T1[R1].Left==Null) && (T2[R2].Left==Null)) /* 都没有左子树 */
return Isomorphic(T1[R1].Right, T2[R2].Right);
if(((T1[R1].Left!=Null) && (T2[R2].Left!=Null)) && ((T1[T1[R1].Left].Element) == (T2[T2[R2].Left].Element))) /* 都没有左子树 */
return (Isomorphic(T1[R1].Left, T2[R2].Left) && Isomorphic(T1[R1].Right, T2[R2].Right));
else
return (Isomorphic(T1[R1].Left, T2[R2].Right) && Isomorphic(T1[R1].Right, T2[R2].Left));
}
int main(){
Tree R1, R2;
R1 = BuildTree(T1);
R2 = BuildTree(T2);
if(Isomorphic(R1, R2))
printf("Yes\n");
else
printf("No\n");
return 0;
}
2.总结
这个代码我自己几乎调了一天,最后通过的时候觉得问题出在基础上了
- 输入、输出如何应用,书写格式掌握的不好,scanf()中的空格、’\n’用得很迷茫。这次的两个错误之一就是scanf中格式的修改——没有加’\n’, 没有空格
- 第二个错误:没有考虑 N==0的情况
- check[N], check[MaxTree]