Scrapy架构
各部分组件的功能如下:
Engine(引擎): 负责Spider、ItemPipeline、Downloader、Scheduler 中间的通讯,信号、数据传递等。Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎。Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests 请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider 来处理,Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器).Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理详细分析过滤、存储等)的地方。Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩 展下载功能的组件。Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展 和操作引擎和Spider中间通信的功能组件(比如进入Spider的Responses;和从 Spider出去的Requests)
所以: 对应上面架构图上的scrapy运行流程就是:
(1)首先我们在spider中发起一个request,将一个需要处理的url提交给engine
(2)engine收到这个请求后会发送给scheduler,所有的requset都需要在scheduler中排队等待被处理
(3)scheduler将排序后的request发送给engine
(4)engine收到这个requset后,向downloader发起请求下载url链接里面的数据
(5)downloader下载好数据后,将数据都存储在response中,将response交给engine
如果下载失败了,这个引擎告诉调度器,这个request下载失败了,记录一下,我们待会儿再下载
(6)engine把response交给spider处理,spider会处理response,从中分析提取数据
(7) 首先spider提取需要的数据放入item中发送给engine;并且将后面还有要获取数据的url发送给engine作为一个新的request, 发送给engine
(8)item数据发送给Pipeline处理,request继续进入scheduler,重复第二步操作
如果scheduler中还有request,程序就不会停止
#安装scrapy框架
pip install scrapy
#安装完scrapy后我们查看一下scrapy的命令有哪些
scrapy

首先用到startproject命令,可以直接创建一个scrapy的项目
scrapy startproject ScrapyDemo
然后在你当前目录下就会生成刚才创建的项目
创建好项目后会有这么一段提示:
所以我们直接进入刚才的目录下,创建我们第一个爬虫程序
#进入刚才创建的目录下
cd ScrapyDemo
#快速生成一个爬虫程序
scrapy genspider genspider example example.com
查看生成的爬虫程序 Scrapy.Demo/SpiderDemo/spiders/example.py
class ExampleSpider(scrapy.Spider):
name = 'example'
allowed_domains = ['example.com']
start_urls = ['http://example.com/']
def parse(self, response):
pass
我们仿照他写一个爬虫程序,BaiDuSpider,查看百度的页面信息
import scrapy
class BaiDuSpider(scrapy.Spider):
# 爬虫的名称,用于启动爬虫
name='BaiDuSpider'
# 设置爬虫允许爬取的域名
allowed_domains=["baidu.com"]
# 启动的url
start_urls=["http://www.baidu.com"]
#response默认的解析函数
def parse(self,response):
print(response.text)
终端启动爬虫命令:
scrapy crawl BaiDuSpider
成功获取到了数据