Scrapy爬虫框架

Scrapy架构

Scrapy 是用 Python 实现的一个为了爬取网站数据、提取结构性数据而编写的应用框架。我们可以通过Scrapy快速完成一个爬虫程序
这是官网的架构图

各部分组件的功能如下: 

Engine(引擎): 负责SpiderItemPipelineDownloaderScheduler 中间的通讯,信
号、数据传递等。
Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排
列,入队,当引擎需要时,交还给引擎。
Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests 请求,并将其
获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider 来处理,
Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数
据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器).
Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理详细分析过滤、存储等)的地方。
Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩 展下载功能的组
件。
Spider MiddlewaresSpider中间件):你可以理解为是一个可以自定扩展 和操作引擎和
Spider中间通信的功能组件(比如进入SpiderResponses;和从 Spider出去的Requests

所以: 对应上面架构图上的scrapy运行流程就是:

(1)首先我们在spider中发起一个request,将一个需要处理的url提交给engine

(2)engine收到这个请求后会发送给scheduler,所有的requset都需要在scheduler中排队等待被处理

(3)scheduler将排序后的request发送给engine

(4)engine收到这个requset后,向downloader发起请求下载url链接里面的数据

(5)downloader下载好数据后,将数据都存储在response中,将response交给engine

  如果下载失败了,这个引擎告诉调度器,这个request下载失败了,记录一下,我们待会儿再下载

(6)engine把response交给spider处理,spider会处理response,从中分析提取数据

  (7)  首先spider提取需要的数据放入item中发送给engine;并且将后面还有要获取数据的url发送给engine作为一个新的request, 发送给engine

(8)item数据发送给Pipeline处理,request继续进入scheduler,重复第二步操作

如果scheduler中还有request,程序就不会停止

首先我们需要安装scrapy框架,终端输入命令:
#安装scrapy框架
pip install scrapy

#安装完scrapy后我们查看一下scrapy的命令有哪些
scrapy

首先用到startproject命令,可以直接创建一个scrapy的项目 

scrapy startproject ScrapyDemo

然后在你当前目录下就会生成刚才创建的项目

创建好项目后会有这么一段提示:

 

 所以我们直接进入刚才的目录下,创建我们第一个爬虫程序

#进入刚才创建的目录下
cd ScrapyDemo

#快速生成一个爬虫程序
scrapy genspider genspider example example.com

查看生成的爬虫程序  Scrapy.Demo/SpiderDemo/spiders/example.py

class ExampleSpider(scrapy.Spider):
    name = 'example'
    allowed_domains = ['example.com']
    start_urls = ['http://example.com/']

    def parse(self, response):
        pass

我们仿照他写一个爬虫程序,BaiDuSpider,查看百度的页面信息

import scrapy
class BaiDuSpider(scrapy.Spider):
    # 爬虫的名称,用于启动爬虫
    name='BaiDuSpider'
    # 设置爬虫允许爬取的域名
    allowed_domains=["baidu.com"]
    # 启动的url
    start_urls=["http://www.baidu.com"]

    #response默认的解析函数
    def parse(self,response):
        print(response.text)

终端启动爬虫命令:

scrapy crawl BaiDuSpider

成功获取到了数据 

 

### 使用 Scrapy 爬虫框架的方法 Scrapy 是一个用于从网页中提取结构化数据的强大 Python 爬虫框架[^3]。以下是关于其安装、配置和使用的具体介绍。 #### 一、环境准备 为了使用 Scrapy,首先需要确保已正确安装该框架。可以通过以下命令完成安装: ```bash pip install scrapy ``` 如果需要额外的安全支持,还可以安装 `cryptography` 和 `pyOpenSSL` 库来满足特定场景下的网络安全性需求[^4]。 --- #### 二、创建 Scrapy 项目 通过运行以下命令初始化一个新的 Scrapy 项目: ```bash scrapy startproject my_project_name ``` 这会生成一个标准的项目目录结构,其中包含了多个重要文件,例如 `items.py`, `middlewares.py`, `pipelines.py`, `settings.py` 等。这些文件分别负责不同的功能模块设计: - **items.py**: 定义爬取的数据模型。例如,在此文件中可以定义如下类以存储文章标题及其链接信息: ```python import scrapy class ArticleItem(scrapy.Item): title = scrapy.Field() link = scrapy.Field() ``` - **settings.py**: 配置全局参数,比如请求头设置、并发数调整等。 --- #### 三、开发 Spider 文件 Spider 是 Scrapy 的核心部分之一,用来描述如何访问某个网站并从中获取所需的内容。通常位于项目的 `spiders` 子目录下。下面展示了一个简单的 spider 实现例子: ```python import scrapy class ExampleSpider(scrapy.Spider): name = 'example' allowed_domains = ['example.com'] start_urls = ['http://www.example.com'] def parse(self, response): for item in response.css('div.article'): yield { 'title': item.css('h2.title::text').get(), 'link': item.css('a::attr(href)').get(), } ``` 上述代码片段展示了如何解析 HTML 页面中的指定标签,并将其转换成字典形式返回给后续处理阶段[^5]。 --- #### 四、启动爬虫 进入包含 `scrapy.cfg` 文件所在的根路径后执行下列指令即可触发对应名称的爬虫任务: ```bash scrapy crawl example ``` 注意这里的 `example` 要替换为你实际编写的那个 Spider 类的名字属性值。 更多高级特性可查阅官方文档地址:https://docs.scrapy.org/en/latest/[^1] --- ### 总结 综上所述,利用 Scrapy 可极大简化复杂度较高的 Web 数据采集工作流;同时借助灵活丰富的插件体系还能进一步扩展功能性边界。希望以上内容能对你有所帮助! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值