HALCON 是一款功能强大的机器视觉软件,广泛应用于车牌识别系统中,通过图像预处理、区域提取与 OCR 字符识别等步骤,实现对图片中车牌信息的自动识别。
一、项目介绍
项目是一个基于 Halcon 的车牌识别系统,主要面向静态图片进行车牌区域定位和字符识别。通过手动调整阈值、面积筛选、形态学操作等方式,实现了从原始图像到最终车牌信息输出的完整流程。
项目特点如下:
-
不依赖深度学习模型,使用 Halcon 内置算子完成识别。
-
支持英文数字车牌识别(不含中文)。
-
可通过自定义模板扩展识别范围。
-
识别准确率高,适合嵌入式或轻量级应用场景。
二、项目功能
1、图像读取与显示
读取本地图像并显示在窗口中。
2、颜色空间转换
将 RGB 图像转换为 HSV 空间,以增强目标区域对比度。
3、图像增强
使用 emphasize
算子提升图像对比度,便于后续分割。
4、图像二值化
根据设定的阈值提取目标区域。
5、区域连接与闭合
对图像中的连通区域进行合并,并使用矩形闭运算保留车牌结构特征。
6、区域筛选
按照面积大小选择最大区域,并填充空洞。
7、抠图处理
提取车牌区域图像用于后续识别。
8、OCR 字符识别
使用 Halcon 自带的 MLP 分类器进行字符识别,输出识别结果。
三、案例:
基于 Halcon 和 .NET 实现车牌智能定位与车牌号码识别的详细方法和步骤:
1. 系统实现步骤
(1)加载图像
从文件、摄像头或网络加载包含车牌的图像。
(2)图像预处理
-
颜色空间转换:将图像从 RGB 转换为 HSV 空间,便于后续处理。
-
二值化:通过阈值分割将车牌区域突出显示。
-
形态学操作:使用开运算去除噪声。
(3)车牌定位
-
颜色分割:根据车牌颜色特征分割出车牌区域。
-
形态学操作:对分割后的区域进行形态学操作,提取车牌轮廓。
-
几何变换:计算车牌区域的旋转角度,使用仿射变换将车牌转正。
(4)字符分割
-
投影分析:对转正后的车牌图像进行水平或垂直投影,分割出单个字符。
-
连通域分析:提取字符的连通域。
(5)字符识别
-
加载 OCR 模型:使用 Halcon 自带的 OCR 分类器或自定义训练的模型。
-
识别字符:对分割后的字符图像进行识别。
(6)后处理
-
字符排序:根据字符在车牌中的位置进行排序。
-
规则校验:结合车牌格式规则,过滤不符合规则的识别结果。
2. 示例代码(C# + Halcon)
以下是一个简化的代码框架,用于实现车牌识别:
using HalconDotNet; // 引入Halcon的C#库
class LicensePlateRecognition
{
public string RecognizeLicensePlate(string imagePath)
{
// 1. 加载图像
HImage image = new HImage(imagePath);
// 2. 预处理
HImage grayImage, thresholdImage, regionImage;
image.RGB1ToGray(out grayImage); // 灰度化
grayImage.Threshold(out thresholdImage, 128, 255); // 二值化
thresholdImage.Connection(out regionImage); // 连通域分析
// 3. 车牌定位
HRegion plateRegion = FindLicensePlateRegion(regionImage);
// 4. 字符分割
List<HImage> charImages = SplitCharacters(plateRegion, image);
// 5. 字符识别
string plateNumber = "";
foreach (HImage charImage in charImages)
{
string charResult = RecognizeCharacter(charImage);
plateNumber += charResult;
}
// 6. 后处理
plateNumber = PostProcess(plateNumber);
// 清理资源
image.Dispose();
return plateNumber;
}
private HRegion FindLicensePlateRegion(HImage image)
{
// 实现车牌定位逻辑
return new HRegion();
}
private List<HImage> SplitCharacters(HRegion plateRegion, HImage image)
{
// 实现字符分割逻辑
return new List<HImage>();
}
private string RecognizeCharacter(HImage charImage)
{
// 实现字符识别逻辑
return "";
}
private string PostProcess(string plateNumber)
{
// 实现后处理逻辑
return plateNumber;
}
}
3. 优化建议
-
硬件加速:启用 Halcon 的 GPU 加速模式,提升处理速度。
-
多帧融合:对视频流中的多帧图像进行融合,提高识别稳定性。
-
动态参数调整:根据图像质量动态调整 OCR 参数,提升适应性。
通过以上步骤和代码框架,结合 Halcon 的强大图像处理功能和 .NET 的开发环境,可以实现高效的车牌智能定位与号码识别系统。