Acwing 1169.糖果 (差分约束的最长路模型)

这篇博客讨论了如何使用差分约束系统解决幼儿园糖果分配问题,确保每个孩子都能得到糖果并满足他们的特定需求。通过建立虚拟源点和最长路模型,实现了满足所有条件的最小糖果数的计算。文章提供了具体的算法实现和代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Acwing 1169.糖果

题意

幼儿园里有 N 个小朋友,老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。

但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候, 老师需要满足小朋友们的 K 个要求。

幼儿园的糖果总是有限的,老师想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。

思路

先将所有小朋友获得的糖果设成变量,即我们有 N 个变量,然后根据 K 个要求写出不等式,因为求的是最小值,所以应该用最大路的差分约束模型。

然后考虑一个问题:是否存在一个源点,它可以到达所有的边,我们可以发现,如果只用上述的 K 个不等式,是不存在这样的点的,所以我们建立一个虚拟源点 0,所有的变量都满足 x i > 0 x_i > 0 xi>0 x i > = 0 + 1 x_i >= 0 + 1 xi>=0+1,所以只需要在虚拟源点和所有点之间连一条长度为 1 1 1 的边即可。

接下来套用差分约束的最长路模型即可。

代码
// Author:zzqwtcc
// Problem: 糖果
// Contest: AcWing
// Time:2021-10-28 22:29:13
// URL: https://www.acwing.com/problem/content/1171/
// Memory Limit: 64 MB
// Time Limit: 1000 ms

#include<bits/stdc++.h>
#include<unordered_map>
// #define int long long
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define mod 1000000007
#define MOD 998244353
#define rep(i, st, ed) for (int (i) = (st); (i) <= (ed);++(i))
#define pre(i, ed, st) for (int (i) = (ed); (i) >= (st);--(i))
// #define debug(x,y) cerr << (x) << " == " << (y) << endl;
#define endl '\n'
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
template<typename T> inline T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<typename T> inline T lowbit(T x) { return x & -x; }
template<typename S,typename T>void debug(S s, T t){cerr << s << " == " << t << endl;}
template<typename T>void debug(T t){cerr << t << endl;}
template<typename T>void debug(T t[],int st,int ed){for(int i = st; i <=ed;++i){cerr << t[i] << " ";}cerr << endl;}
template<typename T>void debug(const vector<T>&t){for(int i =0 ; i < t.size();++i)cerr << t[i] << " ";cerr << endl;}
// template<typename T> T qmi(T a, T b = mod - 2, T p = mod) { T res = 1; b %= (p - 1 == 0 ? p : p - 1); while (b) { if (b & 1) { res = (LL)res * a % p; }b >>= 1; a = (LL)a * a % p; }return res % mod; }

const int N = 1e5 + 10, M = 5 * N;
int n, k;
int h[N],e[M],ne[M],w[M],idx;
int cnt[N], d[N];
bool st[N];

void add(int a,int b, int c){
	e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx++;
}

bool spfa(){
	memset(d,-0x3f,sizeof d);
	stack<int>q;
	q.push(0);
	d[0] = 0;
	
	while(q.size()){
		int u = q.top();
		q.pop();
		
		st[u] = false;
		
		for(int i = h[u]; ~i; i = ne[i]){
			int j = e[i];
			int dis = w[i];
			
			if(d[j] < d[u] + dis){
				d[j] = d[u] + dis;
				cnt[j] = cnt[j] + 1;
				if(cnt[j] >= n + 1)return false;
				if(!st[j]){
					st[j] = true;
					q.push(j);
				}
			}
		}
	}
	
	return true;
}

void solve() {
    cin >> n >> k;
    memset(h,-1,sizeof h);
    while(k--){
    	int x,a,b;scanf("%d%d%d",&x,&a,&b);
    	if(x == 1)add(a,b,0), add(b,a,0);
    	else if(x == 2)add(a,b,1);
    	else if(x == 3)add(b,a,0);
    	else if(x == 4)add(b,a,1);
    	else add(a,b,0);
    }
    
    for(int i  = 1; i <= n;++i)add(0,i,1);
    
    if(spfa()){
    	LL res = 0;
    	for(int i = 1; i <= n;++i){
    		res += d[i];
    	}
    	
    	cout << res << endl;
    }
    else puts("-1");
}

signed main() {

    //int _; cin >> _;
    //while (_--)
        solve();

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值