深入解析微服务:优势、痛点与技术选型
1. 微服务的使能技术
在微服务架构中,有多种技术可以助力其实现和优化。
- 分布式追踪工具 :开源工具能提供一些有用的特性,例如 Jaeger 专注于分布式追踪。而像 Lightstep 和 Honeycomb 这样的产品则更进一步,它们代表了新一代工具,超越传统监控方法,更便于探索运行系统的状态。
- 容器与 Kubernetes
- 容器 :理想情况下,每个微服务实例应独立运行,容器提供了轻量级的隔离执行环境,启动速度快,成本效益高。
- Kubernetes :当开始使用容器后,需要一个平台来管理跨多台底层机器的容器,Kubernetes 这样的容器编排平台就能实现这一功能,它能有效分配容器实例,提高服务的健壮性和吞吐量,同时高效利用底层机器。不过,若只有少数微服务,采用 Kubernetes 可能不太必要,当管理部署的开销成为难题时,可考虑使用。若决定使用,最好借助公共云提供商的托管服务,因为自行运行 Kubernetes 集群工作量巨大。
- 流式处理 :虽然微服务架构逐渐远离单体数据库,但仍需在微服务间共享数据,同时企业也希望从批量报告转向实时反馈。因此,能轻松流式处理大量数据的产品在微服务架构中很受欢迎。Apache Kafka 是微服务环境中流式数据的首选,它具有消息持久化、压缩和处理大量消息的能力,还新增了流处理功能,也可与 Apache Flink 等专用流处理解决方案结合使用。Debezium 是一个开源工具,可帮助将现有