img.model

 

Python 的 Pillow (PIL) 库中,img.mode 用于获取图像的 颜色模式(color mode),它表示图像中像素数据的存储方式。常见的图像模式包括:

常见的 img.mode

模式说明
'1'1-bit 黑白图像(二值图,每个像素 0 或 1)
'L'8-bit 灰度图像(0=黑,255=白)
'P'8-bit 调色板索引图像(基于调色板的颜色)
'RGB'24-bit 真彩色(红、绿、蓝三通道,每通道 8-bit)
'RGBA'32-bit 真彩色 + Alpha 透明通道
'CMYK'青(C)、品红(M)、黄(Y)、黑(K)四通道
'YCbCr'亮度(Y)、色度(Cb、Cr)模式
'HSV'色调(H)、饱和度(S)、明度(V)模式
这是我的wuliao_detection库,你学习一下 from maix import camera, display, image, nn, app, uart from collections import defaultdict, deque import random import struct device = "/dev/ttyS0" serial0 = uart.UART(device, 115200) class YOLODetector: def __init__(self, model_path, conf_th=0.9, iou_th=0.45): self.model = nn.YOLOv5(model=model_path, dual_buff=True) self.conf_th = conf_th self.iou_th = iou_th self.labels = self.model.labels self.color_map = self._generate_color_map() def _generate_color_map(self): # 生成 image.Color 对象 return { idx: image.Color.from_rgb( random.randint(0, 255), random.randint(0, 255), random.randint(0, 255) ) for idx in range(len(self.labels)) } def detect(self, img): return self.model.detect(img, conf_th=self.conf_th, iou_th=self.iou_th) class DetectionVisualizer: def __init__(self, trail_length=15): self.trail_history = defaultdict(lambda: deque(maxlen=trail_length)) def draw_detection(self, img, obj, label, color): # 确保所有绘图函数使用 image.Color 类型 img.draw_rect(obj.x, obj.y, obj.w, obj.h, color) img.draw_string(obj.x, obj.y, f"{label}: {obj.score:.2f}", color) cx = obj.x + obj.w // 2 cy = obj.y + obj.h // 2 self._draw_center_marker(img, cx, cy, color) img.draw_string(cx-20, cy+15, f"({cx}, {cy})", color) return cx, cy def update_trail(self, class_id, cx, cy): self.trail_history[class_id].append((cx, cy)) def draw_trails(self, img, class_id, color): history = self.trail_history[class_id] for i in range(1, len(history)): x1, y1 = history[i-1] x2, y2 = history[i] img.draw_line(x1, y1, x2, y2, color, thickness=2) def _draw_center_marker(self, img, x, y, color): img.draw_circle(x, y, 3, color) img.draw_line(x-10, y, x+10, y, color) img.draw_line(x, y-10, x, y+10, color) def main(): detector = YOLODetector("/root/my_wuliao/model_183042.mud", conf_th=0.7) cam = camera.Camera(detector.model.input_width(), detector.model.input_height(), detector.model.input_format()) visualizer = DetectionVisualizer(trail_length=20) disp = display.Display() while not app.need_exit():
最新发布
03-13
<think>好的,我现在需要帮助用户审查和优化他们提供的Maix YOLOv5自定义检测器与可视化类的代码。虽然用户没有直接给出代码,但根据他们的描述,我可以推测可能涉及K210开发板、Micropython以及YOLOv5模型的应用。 首先,我应该回忆K210和MaixPy的特点。K210芯片通常用于边缘计算,资源有限,内存和计算能力都受限制。因此,代码优化可能需要关注内存管理、计算效率以及模型适配性。 用户提到自定义YOLO检测器和可视化类。可能的代码结构包括模型加载、图像预处理、推理、后处理(如非极大抑制)以及结果绘制。常见的优化点可能有: 1. **模型量化与适配**:确保YOLOv5模型已经过适当量化,适合K210的硬件。例如,使用8位量化减少模型大小和加速推理。 2. **内存管理**:由于K210内存有限,需避免频繁的内存分配。可以预先分配缓冲区,复用对象。 3. **图像预处理优化**:使用硬件加速的图像处理功能,如MaixPy的`img.resize()`或`img.copy()`时利用硬件加速。 4. **后处理效率**:非极大抑制(NMS)的实现是否高效,避免使用复杂循环,尽量向量化计算。 5. **绘制函数优化**:减少在绘制边界框和标签时的计算,例如避免在每次检测时创建新字体对象。 6. **代码结构**:检查是否有冗余代码,类和方法是否职责单一,是否可以利用缓存或预计算值。 接下来,我需要考虑用户可能遇到的问题。例如,模型推理速度慢、内存不足导致崩溃、检测准确率低等。针对这些问题,分别给出优化建议。 同时,用户希望代码审查,可能需要检查代码是否符合MaixPy的最佳实践,例如是否正确释放资源,是否有效利用硬件特性(如KPU)。 最后,生成相关问题,帮助用户深入理解优化方向和潜在问题。</think>以下是对Maix YOLOv5自定义检测器与可视化实现的代码审查要点及优化建议: --- ### 一、代码审查重点 1. **模型加载与硬件适配** - 需检查是否使用`KPU.load()`正确加载量化后的YOLOv5模型(后缀为.kmodel) - 确认输入分辨率与模型参数匹配,如`KPU.init_yolo2()`中设置的锚点(anchors)和类别数是否符合预期 2. **内存管理** - 图像处理时是否复用`img`对象而非频繁创建新对象 - NMS处理阶段是否产生临时变量堆积,可能引发内存溢出 3. **计算效率** - 预处理是否使用`img.resize()`的硬件加速特性 - 检测结果解析是否采用向量化操作而非逐像素循环 4. **可视化实现** - 字体加载是否使用`image.Image().draw_string()`的高效方式 - 边界框绘制是否优化了重叠区域的渲染逻辑 --- ### 二、优化建议 ```python # 优化示例片段 class YOLOv5: def __init__(self): self.kpu = KPU() self.kpu.load(0x300000) # 模型加载到固定内存地址 self.anchors = [1.19,1.98, 2.79,4.59, 4.53,8.92] # 示例锚点 self.class_names = ["face", "object"] # 预定义类别标签 def detect(self, img): img.resize(224, 224) # 硬件加速调整尺寸 self.kpu.run(img) boxes = self.kpu.regionproposal() # 使用内置函数获取检测框 return self.nms(boxes) # 优化后的NMS实现 def nms(self, boxes): # 实现基于IoU的快速筛选算法 return sorted_boxes[:3] # 限制最大检测数量 ``` 1. **内存优化** - 使用`gc.collect()`在关键节点手动回收内存 - 预初始化颜色列表`colors = [(255,0,0), (0,255,0)]`避免重复计算 2. **计算加速** - 启用K210双核特性,将图像采集与推理分线程处理 - 使用`timeit`模块定位性能瓶颈 3. **模型优化** - 通过[MaixHub](https://maixhub.com)进行模型重训练时启用深度可分离卷积 - 将输出层通道数压缩到实际需要的类别数量 --- ### 三、关键问题排查 1. **模型兼容性问题** ```python try: kpu.init_yolo2(threshold=0.5) except Exception as e: print("模型初始化失败:", e) ``` 2. **图像格式验证** ```python if img.format != image.RGB565: img = img.to_grayscale().copy() # 强制转换格式 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值