第七次课程官方操作文档:Tutorial/opencompass/readme.md at camp2 · InternLM/Tutorial · GitHub
第七次课程录播链接:OpenCompass 大模型评测实战_哔哩哔哩_bilibili
一、评测促进模型发展
1.评测的必要性
2.评测的挑战
二、opencompass介绍
1.opencompass开源历程
2.opencompass应用企业及高校
是meta官方推荐唯一国产大模型评测体系
社区支持最完善的评测体系之一,有100+评测集 50万+题目,涉及学科、语言、知识、理解、推理等多个领域
3.如何评测大模型
评测对象包括基座模型和对话模型
- 基座模型:一般是经过海量的文本数据以自监督学习的方式进行训练获得的模型(如OpenAI的GPT-3,Meta的LLaMA),往往具有强大的文字续写能力。
- 对话模型:一般是在的基座模型的基础上,经过指令微调或人类偏好对齐获得的模型(如OpenAI的ChatGPT、书生·浦语、通义千问),能理解人类指令,具有较强的对话能力。
评测方式分为客观评测和主观评测
提示词工程
明确性、概念无歧义、逐步引导、具体描述、迭代反馈
小样本学习、思维链技术
长文本评测 :指令跟随能力、长文本建模能力、信息抽取能力
汇集社区力量:工具——基准——榜单
大模型评测全栈工具链:
数据污染检查--更丰富的模型推理接入--长文本能力评测--中英文双语主观评测
数据污染检查:支持包括GSM-8K、MMLU等主流数据集上的污染检测
更丰富的模型推理接入:支持近20个商业模型API、支持LMDeploy、vLLM、lightLLM等推理后端,如huggingface模型评测较慢,可以更换lmdeploy推理后端,加快评测速度
opencompass评测流水线
在 OpenCompass 中评估一个模型通常包括以下几个阶段:配置 -> 推理 -> 评估 -> 可视化。
- 配置:这是整个工作流的起点。您需要配置整个评估过程,选择要评估的模型和数据集。此外,还可以选择评估策略、计算后端等,并定义显示结果的方式。
- 推理与评估:在这个阶段,OpenCompass 将会开始对模型和数据集进行并行推理和评估。推理阶段主要是让模型从数据集产生输出,而评估阶段则是衡量这些输出与标准答案的匹配程度。这两个过程会被拆分为多个同时运行的“任务”以提高效率,但请注意,如果计算资源有限,这种策略可能会使评测变得更慢。如果需要了解该问题及解决方案,可以参考 FAQ: 效率。
- 可视化:评估完成后,OpenCompass 将结果整理成易读的表格,并将其保存为 CSV 和 TXT 文件。你也可以激活飞书状态上报功能,此后可以在飞书客户端中及时获得评测状态报告。 接下来,我们将展示 OpenCompass 的基础用法,展示书生浦语在
C-Eval
基准任务上的评估。它们的配置文件可以在configs/eval_demo.py
中找到。
compasskit:大冒险评测全栈工具链
自研高质量大模型评测基准
mathbench:多层次数学能力评测基准
CIBench:代码解释器能力评测基准
T-Eval大模型细粒度工具能力评测基准
三、代码实现
1.环境安装
2.准备数据集
3.查看支持的数据集和模型
3.启动评测(基础作业)
第一种纯用命令行
python run.py --datasets ceval_gen --hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True --model-kwargs trust_remote_code=True device_map='auto' --max-seq-len 1024 --max-out-len 16 --batch-size 2 --num-gpus 1 --debug
启动评测命令行参数
参数 | 说明 |
--datasets ceval_gen | 要评价的数据集 |
--hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b | 用的模型 |
--tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b | 分词器(tokenizer)的路径 |
--tokenizer-kwargs padding_side='left' truncation='left' | 这个选项传递了额外的参数给分词器。padding_side='left'意味着在序列的左侧填充标记,以确保所有序列的长度一致。truncation='left'表示如果序列超过了最大长度,将从左侧开始截断。 |
trust_remote_code=True | 这个布尔参数允许加载远程代码,这在加载模型和分词器时可能会用到。设置为True意味着信任并加载远程代码。 |
device_map='auto' | 这个参数指定了模型应该在哪个设备上运行。'auto'选项意味着让系统自动决定使用哪个设备,通常是GPU(如果有的话)。 |
--max-seq-len 1024 | 可以输入的最大序列长度 1024token/字符 |
--max-out-len 16 | 可以输出的最大序列长度 16token/字符(视情况而定) |
--batch-size 2 | 每小批次训练处理的样本数 |
--num-gpus 1 | GPU数 |
--work dir ‘xxxx/xxx’ | 指定执行操作的路径,默认在outputs/default路径下 |
--reuse latest | 指定从哪个时间戳开始跑,时间戳查看在outputs/default,比如--reuse 20240416_215103,就是接着这个时间戳开始跑 |
--debug | 开这个模式,所有的bug都会在terminal显示,不开就在outputs/logs下 |
评测的运行情况、结果在:
第二种方法 把命令行放入python文件
python run.py configs/eval_demo.py
第一次用的这种,遇到了错误捏,仔细一看run文件是根本没有,删环境重头来过~
跑了40分钟可以了
基础作业完整如下:
dataset | version | metric | mode |