目录
1 栈
(1)概念与结构
栈:⼀种特殊的线性表,其只允许在固定的⼀端进⾏插⼊和删除元素操作。进⾏数据插⼊和删除操作 的⼀端称为栈顶,另⼀端称为栈底。栈中的数据元素遵守后进先出LIFO(LastInFirstOut)的原则。
压栈:栈的插⼊操作叫做进栈/压栈/⼊栈,⼊数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。
LIFO:后进先出或者说先进后出
对于栈的理解图如下:
用数组来实现栈:入栈和出栈的时间复杂度都是O(1)
栈的结构:
逻辑结构:是线性的;
物理结构:不一定,取决于你是用数组实现的还是用链表实现的,如果是用数组实现的,数组是连续存放,元素地址都是连续的,此时是线性结构,用链表实现则不是线性结构。
(2)栈的实现(数组)
定义栈的结构
//定义栈的结构
typedef int STDataType;
typedef struct Stack
{
STDataType* arr;
int top;//定义栈中有效数据的个数
int capacity;//栈的空间大小
}ST;
1 初始化
(1)List.h:
#pragma once
#include<stdio.h>
#include<stdlib.h>
typedef int STDataType;
typedef struct Stack
{
STDataType* arr;
STDataType size;//定义栈中有效的数据个数
STDataType capacity;//栈的空间大小
}ST;
//初始化
void STInit(ST* ps);
(2)List.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
//初始化
void STInit(ST* ps)
{
ps->arr = NULL;
ps->size = ps->capacity = 0;
}
(3)test.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
void test01()
{
ST st;
STInit(&st);
}
int main()
{
test01();
return 0;
}
2 销毁
//销毁
void STDesTroy(ST* ps)
{
if(ps->arr)
free(ps->arr);
ps->arr = NULL:
ps->top = ps->capacity = 0;
}
3 入栈
有两种情况:1)栈内空间大小足够
2)栈内空间不够-------增容
栈顶插入数据,栈顶对于数组来说就是数组的尾部,栈顶插入数据即在数组尾部插入数据。
List.c
//入栈——栈顶
void STPush(ST* ps, STDataType x)
{
assert(ps);
//判断空间是否足够
if (ps->top == ps->capacity)
{
//增容
int newCapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
int* tmp = (STDataType*)realloc(ps->arr, newCapacity * sizeof(STDataType));
if (tmp == NULL)
{
perror("realloc fail!");
exit(1);
}
ps->arr = tmp;
ps->capacity = newCapacity;
}
//空间足够
ps->arr[ps->top++] = x;
}
test.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
void test01()
{
ST st;
STInit(&st);
STPush(&st, 1);
STPush(&st, 2);
STPush(&st, 3);
STPush(&st, 4);
STDestory(&st);
}
int main()
{
test01();
return 0;
}
判断栈是否为空
//栈是否为空
bool STEmpty(ST* ps)
{
assert(ps);
return ps->top == 0;
}
4 出栈
//出栈——栈顶
void STPop(ST* ps)
{
assert(!STEmpty(ps));
ps->top--;
}
5 取栈顶元素
top指向的是有效数据的下一个位置,取栈顶是top-1
//获取栈中有效元素个数
int STSize(ST* ps)
{
assert(ps);
return ps->top;
}
6 获取栈的有效个数
int STSize(ST* ps)//用int 是因为明确了返回的数据是int类型,而不是栈中定义的int类型
{
assert(ps);
return ps->top;
}
(3)栈的应用
思路:借助数据结构-----栈,遍历字符串,左括号入栈,是右括号就取栈顶元素比较,看是否匹配
注意:是取栈顶,不是出栈顶!!!
-
数据结构选择:使用栈存储左括号(
(
、[
、{
),因为括号匹配需要遵循 "最晚出现的左括号最先被匹配" 的规则,与栈的特性一致。 -
遍历字符串:
- 遇到左括号时,将其压入栈中(
STPush
)。 - 遇到右括号时:
- 若栈为空(无对应的左括号),直接返回无效(
false
)。 - 取出栈顶的左括号,检查是否与当前右括号匹配(如
(
对应)
)。 - 若不匹配,返回无效;若匹配,将该左括号出栈(
STPop
)。
- 若栈为空(无对应的左括号),直接返回无效(
- 遇到左括号时,将其压入栈中(
-
最终判断:
- 遍历结束后,若栈为空,说明所有左括号都找到了匹配的右括号,返回有效(
true
)。 - 若栈不为空,说明存在未匹配的左括号,返回无效(
false
)。
- 遍历结束后,若栈为空,说明所有左括号都找到了匹配的右括号,返回有效(
-
边界处理:
- 每次操作前验证栈的状态(非空判断),避免空指针访问。
- 函数结束前销毁栈(
STDesTroy
),释放内存,防止泄露。
//定义栈的结构
typedef char STDataType;
typedef struct Stack {
STDataType* arr;
int top; //指向栈顶的位置---刚好就是栈中有效数据个数
int capacity;//栈的空间大小
}ST;
//初始化
void STInit(ST* ps)
{
ps->arr = NULL;
ps->top = ps->capacity = 0;
}
//销毁
void STDesTroy(ST* ps)
{
if(ps->arr)
free(ps->arr);
ps->arr = NULL;
ps->top = ps->capacity = 0;
}
//入栈——栈顶
void STPush(ST* ps, STDataType x)
{
assert(ps);
//判断空间是否足够
if (ps->top == ps->capacity)
{
//增容
int newCapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
STDataType* tmp = (STDataType*)realloc(ps->arr, newCapacity * sizeof(STDataType));
if (tmp == NULL)
{
perror("realloc fail!");
exit(1);
}
ps->arr = tmp;
ps->capacity = newCapacity;
}
//空间足够
ps->arr[ps->top++] = x;
}
//栈是否为空
bool STEmpty(ST* ps)
{
assert(ps);
return ps->top == 0;
}
//出栈———栈顶
void STPop(ST* ps)
{
assert(!STEmpty(ps));
ps->top--;
}
//取栈顶元素
STDataType STTop(ST* ps)
{
assert(!STEmpty(ps));
return ps->arr[ps->top - 1];
}
//获取栈中有效元素个数
int STSize(ST* ps)
{
assert(ps);
return ps->top;
}
----------------------以上是对栈的实现和应用-----------------------------------
bool isValid(char* s)
{
//借助数据结构---栈
ST st;
STInit(&st);
char* pi = s;
while(*pi != '\0')
{
//左括号入栈
if(*pi == '(' || *pi == '[' || *pi == '{')
{
STPush(&st,*pi);//入栈
}
else
{
//右括号---取栈顶,比较,如果匹配则出栈,不匹配则直接返回false
//栈不为空才能取栈顶
if(STEmpyt(&st));
{
STDesTroy(&st)):
return false;
}
char top = STTop(&st);
if((top == '(' && *pi != ')') || (top == '[' && *pi != ']') ||(top == '{' && *pi != '}')
{
STDesTroy(&st);
return false;
}
//本次是匹配---出栈
STPop(&st);
}
pi++;
}
//判断栈是否为空,为空有效,非空无效
//用三姆操作符判断是否为空
bool ret = STEmpy(&st) ? true :false;
STDesTroy(&st);
return ret;
时间复杂度:O(N) 空间复杂度:O(1)
栈的全部代码如下:
(1)LIst.h:
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef int STDataType;
typedef struct Stack
{
STDataType* arr;
int top;//定义栈中有效的数据个数
int capacity;//栈的空间大小
}ST;
//初始化
void STInit(ST* ps);
//销毁
void STDestory(ST* ps);
//入栈——栈顶
void STPush(ST* ps, STDataType x);
//出栈——栈顶
void STPop(ST* ps);
//取栈顶元素
STDataType STTop(ST* ps);
//栈是否为空
bool STEmpty(ST* ps);
//获取栈中有效元素个数
int STSize(ST* ps);
(2)List.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
//初始化
void STInit(ST* ps)
{
ps->arr = NULL;
ps->top = ps->capacity = 0;
}
//销毁
void STDestory(ST* ps)
{
if (ps->arr)
free(ps->arr);
ps->arr = NULL;
ps->top = ps->capacity = 0;
}
//入栈——栈顶
void STPush(ST* ps, STDataType x)
{
assert(ps);
//判断空间是否足够
if (ps->top == ps->capacity)
{
//增容
int newCapacity = ps->capacity == 0 ? 4 : 2 * ps->capacity;
int* tmp = (STDataType*)realloc(ps->arr, newCapacity * sizeof(STDataType));
if (tmp == NULL)
{
perror("realloc fail!");
exit(1);
}
ps->arr = tmp;
ps->capacity = newCapacity;
}
//空间足够
ps->arr[ps->top++] = x;
}
//栈是否为空
bool STEmpty(ST* ps)
{
assert(ps);
return ps->top == 0;
}
//出栈——栈顶
void STPop(ST* ps)
{
assert(!STEmpty(ps));
ps->top--;
}
//取栈顶元素
STDataType STTop(ST* ps)
{
assert(!STEmpty(ps));
return ps->arr[ps->top - 1];
}
//获取栈中有效元素个数
int STSize(ST* ps)
{
assert(ps);
return ps->top;
}
(3)test.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
void test01()
{
ST st;
STInit(&st);
STPush(&st, 1);
STPush(&st, 2);
STPush(&st, 3);
STPush(&st, 4);
printf("size:%d\n", STSize(&st));
//STPop(&st);
while (!STEmpty(&st))
{
//取栈顶
STDataType top = STTop(&st);
printf("%d ", top);
//出栈
STPop(&st);
}
printf("\n");
STDestory(&st);
}
int main()
{
test01();
return 0;
}