【每日易题】求二进制中1的个数——三种非常巧妙的解题思路

本文介绍了三种计算二进制数中1的个数的方法,包括通过除以2取余、移位操作以及利用n&(n-1)的巧妙算法。特别指出处理负数时需转换为无符号整型,以避免错误结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

 一、题目介绍

二、解题思路 

1. 第一种解题方法

2. 第二种解题方法

3. 第三种解题方法


 一、题目介绍

原题链接:二进制中1的个数

二、解题思路 

1. 第一种解题方法

十进制数中,例如1479,只要通过不断的%10和/10操作,就可以得到1479的每一位。

而将这个方法推广到二进制中也是可行的。只要通过不断的%2和/2操作,也可以将二进制的每一位拿出来,从而对每一位进行判断,记录1的个数。

int count_num_of_1(int n)
{
	int count = 0;
	while (n)
	{
		if (n % 2 == 1)
			count++;
		n /= 2;
	}
	return count;
}

int main()
{
	int num = 0;
	scanf("%d", &num);
	int ret = count_num_of_1(num);
	printf("%d\n", ret);
	return 0;
}

    当然,不要开心地以为到这里就完成了,当num为负数时,你会发现结果是错误的,例如num = -1。当num为-1时,num%2 != 0,因此会跳过if直接执行num /=2,结果num为0直接跳出循环并返回count=0。而真实情况下-1在内存中存储的是补码,即32个1。

    不了解原码反码补码的可以看我往期博客,这里就不过多赘述。

【C语言】整数的二进制以及移位操作符_Hacynn的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/zzzzzhxxx/article/details/132767057?spm=1001.2014.3001.5502

解决方法:在count_num_of_1函数参数中将int n 改成 unsigned int n,即无符号整型。这样当num = -1时,此时n会认为num不是-1而是一个二进制全是1的数(即4294967295),此时count就为32。

 

2. 第二种解题方法

第二种方法是通过移位的方式求出1的个数,将二进制序列的每一位都&1,当结果为1时count++。下面以15为例子:

int count_num_of_1(unsigned int n)
{
	int count = 0;
	int i = 0;
	for ( i = 0; i < 32; i++)
	{
		if (((n >> i) & 1) == 1)
			count++;
	}
	return count;
}

3. 第三种解题方法

 前面两种解题方法其实都不太高效,这里介绍一个非常巧妙的方法,巧妙到我们难以想象得到,该方法的核心就是n = n & (n - 1),下面以15为例子讲解:

n = n & (n - 1)就可以理解为:只要执行一次,n的二进制序列中的1就少一个。

那么求二进制中1的个数就变成了n = n & (n - 1)能够执行几次,只要知道执行几次n = n & (n - 1)就可以知道n的二进制序列中有多少个1。

int count_num_of_1(unsigned int n)
{
	int count = 0;
	while (n)
	{
		n = n & (n - 1);
		count++;
	}
	return count;
}

 这次题目的讲解就到此为止了。如果觉得作者写的不错,求给作者一个大大的点赞支持一下,你们的支持是我更新的最大动力!

 

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hacynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值