LCP 19. 秋叶收藏集(Leetcode每日一题-2020.10.01)--抄答案

这篇博客介绍了如何解决一个关于调整红叶和黄叶排列的问题。小扣希望将收藏集调整为「红、黄、红」三部分,通过动态规划算法,可以找出最小的操作次数来完成这一目标。示例中给出了具体的代码实现,展示了如何在给定的字符串leaves上应用动态规划策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem

小扣出去秋游,途中收集了一些红叶和黄叶,他利用这些叶子初步整理了一份秋叶收藏集 leaves, 字符串 leaves 仅包含小写字符 r 和 y, 其中字符 r 表示一片红叶,字符 y 表示一片黄叶。
出于美观整齐的考虑,小扣想要将收藏集中树叶的排列调整成「红、黄、红」三部分。每部分树叶数量可以不相等,但均需大于等于 1。每次调整操作,小扣可以将一片红叶替换成黄叶或者将一片黄叶替换成红叶。请问小扣最少需要多少次调整操作才能将秋叶收藏集调整完毕。

Contraints:

  • 3 <= leaves.length <= 10^5
  • leaves 中只包含字符 ‘r’ 和字符 ‘y’

Example1

输入:leaves = “rrryyyrryyyrr”
输出:2
解释:调整两次,将中间的两片红叶替换成黄叶,得到 “rrryyyyyyyyrr”

Example2

输入:leaves = “ryr”
输出:0
解释:已符合要求,不需要额外操作

Solution

class Solution {
public:
    int minimumOperations(string leaves) {
        int len = leaves.size();
        vector<vector<int> > dp(len, vector<int>(3));
        dp[0][0] = (leaves[0] == 'y');
        dp[0][1] = dp[0][2] = dp[1][2] = INT_MAX;
        for(int i=1; i<len; ++i)
        {
            int turnToRed = (leaves[i] == 'y');
            int turnToYellow = (leaves[i] == 'r');
            dp[i][0] = dp[i - 1][0] + turnToRed;
            dp[i][1] = min(dp[i - 1][0], dp[i - 1][1]) + turnToYellow;
            if(i >= 2)
            {
                dp[i][2] = min(dp[i - 1][1], dp[i - 1][2]) + turnToRed;
            }
        }
        return dp[len - 1][2];
    }
};

//作者:superkakayong
//链接:https://leetcode-cn.com/problems/UlBDOe/solution/zhong-qiu-guo-qing-kuai-le-zi-jie-ti-ku-lcp19-zhon/
//来源:力扣(LeetCode)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值