YARN基本架构原理详解

一、概念理解

Apache Hadoop YARN(Yet Another Resource Negotiator,另一种资源协调者)是一种新的Hadoop资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来的巨大的好处。

YARN产生背景:
a)JobTracker单点故障
b)JobTracker承受的访问压力大,影响系统的扩展性
c)不支持MapReduce之外的计算框架,比如storm、spark、flink

YARN的优势:
资源的统一管理和调度:

  • 集群中所有节点的资源(内存、CPU、磁盘、网络等)抽象为Container。计算框架需要资源进行运算任务时需要向YARN申请Container, YARN按照特定的策略对资源进行调度进行Container的分配。

资源隔离:

  • YARN使用了轻量级资源隔离机制Cgroups进行资源隔离以避免相互干扰,一旦Container使用的资源量超过事先定义的上限值,就将其杀死。

二、YARN的架构

在这里插入图片描述
从YARN的架构来看,它由ResourceManager、NodeManager、JobHistoryServer、Containers、Application Master、job、Task、Client组成。

组件的主要功能介绍:
(1)ResourceManager:

  • 处理客户端请求
  • 启动/监控ApplicationMaster
  • 监控NodeManager
  • 资源分配与调度

(2)ApplicationMaster:

  • 为应用程序申请资源,并分配给内部任务
  • 任务调度、监控与容错

(3)NodeManager:

  • 单个节点上的资源管理
  • 处理来自ResourceManger的命令
  • 处理来自ApplicationMaster的命令

(4)Container:

  • 对资源抽象和封装,目的是为了让每个应用程序对应的任务完成执行

(5)JobHistoryServer:

  • 负责查询job运行进度及元数据管理。

(6)job:

  • 是需要执行的一个工作单元:它包括输入数据、MapReduce程序和配置信息。job也可以叫作Application。

(7)task:

  • 一个具体做Mapper或Reducer的独立的工作单元。task运行在NodeManager的Container中。

(8)Client:

  • 一个提交给ResourceManager的一个Application程序。

(1)ResourceManager

ResourceManager(RM)是一个全局的资源管理器,负责整个系统的资源管理和分

<think>嗯,用户想了解Hadoop YARN Federation的架构和工作机制。这个问题需要深入解释分布式系统的设计思想。用户可能是个大数据工程师或者学生,正在研究YARN的扩展方案。 从技术角度看,YARN Federation的核心是解决单点瓶颈问题。我记得Hadoop在早期版本中,ResourceManager是单点运行的,当集群规模扩大到上万节点时,这会导致性能问题。Federation通过引入多个ResourceManager实例来分担负载,这个设计思路和HDFS Federation很像。 需要重点解释几个关键组件:Router、StateStore和PolicyManager。Router相当于客户端请求的入口点,它根据策略将请求转发给不同的RM;StateStore负责维护集群状态的一致性;PolicyManager则决定了路由逻辑。这三者协同工作才能实现透明的联邦机制。 用户可能还会关心实际部署问题。比如Router的高可用配置、StateStore的选型(Zookeeper还是其他方案)、跨机房部署时的延迟问题等。不过用户当前的问题集中在工作机制上,这些实操细节可以放在后续问题里。 考虑到用户要求详细解释,准备从架构图开始说明,然后分步骤描述请求处理流程。特别要强调"无单点故障"和"线性扩展"这两个核心优势,这对大规模集群非常重要。 用户提供的引用材料里提到Federation不能解决MapReduce性能问题,这个观点是对的。在回答里需要明确区分YARN资源管理和计算框架性能的关系,避免产生误导。 最后要注意技术术语的中文翻译准确性,比如"Sub-Cluster"译为"子集群"比"分集群"更准确,"State Store"译为"状态存储"而非"状态仓库"。</think>以下是Hadoop YARN Federation的架构与工作机制详解: ### **1. 核心目标** 解决单一ResourceManager(RM)的扩展性瓶颈: - **单点故障风险**:传统架构中RM是单点故障源 - **资源限制**:单个RM难以管理超大规模集群(>10K节点) - **性能瓶颈**:高并发场景下调度吞吐量受限 ### **2. 架构组件** ```mermaid graph LR Client-->Router Router-->|路由策略| RM1[RM Sub-Cluster1] Router-->|路由策略| RM2[RM Sub-Cluster2] RM1-->|状态同步| StateStore[(全局状态存储)] RM2-->|状态同步| StateStore ``` #### **关键组件说明** | **组件** | **功能** | |--------------------|--------------------------------------------------------------------------| | **Router** | 客户端请求入口点,实现请求的透明路由(无感知转发) | | **Sub-Cluster** | 独立RM实例+NodeManager组,每个子集群管理专属物理资源 | | **StateStore** | 全局状态存储(通常用ZooKeeper),维护集群拓扑和策略 | | **PolicyManager** | 决策路由策略(如基于队列/用户/负载) | ### **3. 工作流程** #### **(1) 客户端提交作业** ```python # 客户端代码示例(无感知调用) app = yarn_client.submit_app( app_name="federation_demo", resource_request={"memory": "4GB", "vcores": 2} # 资源请求格式不变 ) ``` #### **(2) Router路由决策** 根据策略选择目标子集群: - **策略类型**: - 哈希路由(HashRouterPolicy):$hash(user) \mod N$ - 负载均衡(LoadBasedRouterPolicy):$min(rm_i.load), i\in[1,N]$ - 队列映射(QueueBasedPolicy):$queue \rightarrow rm_id$ #### **(3) 子集群处理** ```mermaid sequenceDiagram RM->>NM: 分配容器 NM->>RM: 心跳报告 RM->>StateStore: 同步状态(作业进度/资源变更) ``` #### **(4) 全局状态同步** - **StateStore维护**: - 子集群活跃状态 - 路由策略版本 - 跨集群队列配额 - 容错机制:若子集群故障,Router自动屏蔽故障节点 ### **4. 关键技术机制** #### **资源隔离与共享** - **物理隔离**:每个NM固定归属一个子集群 - **逻辑统一**:通过Router提供全局资源视图 - **跨集群调度**:需通过`FederationInterceptor`组件实现(实验性特性) #### **容错设计** - **Router HA**:多Router实例+负载均衡器 - **状态存储冗余**:StateStore采用ZooKeeper集群 - **子集群自治**:单个子集群故障不影响其他集群 ### **5. 性能优化效果** $$ T_{max} = \sum_{i=1}^{N} T_{rm_i} \quad (N=\text{子集群数}) $$ - 调度吞吐量线性扩展(实测可达**10倍**提升)[^1] - 支持**百万级**容器并发管理 - 降低单RM GC压力(各子集群独立GC) ### **6. 典型部署场景** ```bash # 配置文件示例(yarn-site.xml) <property> <name>yarn.federation.router.policy</name> <value>org.apache.hadoop.yarn.server.router.HashBasedRouterPolicy</value> </property> <property> <name>yarn.federation.state-store.zk.address</name> <value>zk1:2181,zk2:2181</value> # ZooKeeper集群地址 </property> ``` > **注意**:Federation虽提升扩展性,但增加了运维复杂度,需权衡集群规模与运维成本[^1]。对于中小集群(<5K节点),建议优先优化RM配置而非引入联邦。 --- **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

<一蓑烟雨任平生>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值