算法-------矩阵中的最长递增路径(Java版本)

本文深入探讨了在一个整数矩阵中寻找最长递增路径的算法实现,详细讲解了使用深度优先搜索结合记忆化搜索的方法,避免重复计算,提高算法效率。通过两个示例展示了如何在矩阵中找到最长的递增路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定一个整数矩阵,找出最长递增路径的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。

示例 1:

输入: nums = 
[
  [9,9,4],
  [6,6,8],
  [2,1,1]
] 
输出: 4 
解释: 最长递增路径为 [1, 2, 6, 9]。
示例 2:

输入: nums = 
[
  [3,4,5],
  [3,2,6],
  [2,2,1]
] 
输出: 4 
解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。

解决方法:

public class Solution {
    private static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
    private int m, n;

    public int longestIncreasingPath(int[][] matrix) {
        if (matrix.length == 0) return 0;
        m = matrix.length; n = matrix[0].length;
        int[][] cache = new int[m][n];
        int ans = 0;
        for (int i = 0; i < m; ++i)
            for (int j = 0; j < n; ++j)
                ans = Math.max(ans, dfs(matrix, i, j, cache));
        return ans;
    }

    private int dfs(int[][] matrix, int i, int j, int[][] cache) {
        if (cache[i][j] != 0) return cache[i][j];
        //上下左右  加减一通过数组来遍历 而不是手动代码去写 去复制粘贴
        for (int[] d : dirs) {
            int x = i + d[0], y = j + d[1];
            if (0 <= x && x < m && 0 <= y && y < n && matrix[x][y] > matrix[i][j])
                cache[i][j] = Math.max(cache[i][j], dfs(matrix, x, y, cache));
        }
        return ++cache[i][j];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值