算法---字符串的最大公因子

博客围绕字符串公因子问题展开,给定两个字符串 str1 和 str2,求能同时除尽它们的最长字符串 x。通过判断 str1 + str2 是否等于 str2 + str1 确定是否有解,有解时最优解长度为 gcd(str1.length, str2.length),还提及欧几里得算法用于计算最大公约数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

对于字符串 s 和 t,只有在 s = t + … + t(t 自身连接 1 次或多次)时,我们才认定 “t 能除尽 s”。

给定两个字符串 str1 和 str2 。返回 最长字符串 x,要求满足 x 能除尽 str1 且 x 能除尽 str2 。

示例 1:

输入:str1 = “ABCABC”, str2 = “ABC”
输出:“ABC”
示例 2:

输入:str1 = “ABABAB”, str2 = “ABAB”
输出:“AB”
示例 3:

输入:str1 = “LEET”, str2 = “CODE”
输出:“”

提示:

1 <= str1.length, str2.length <= 1000
str1 和 str2 由大写英文字母组成

解决思路

其实看起来两个字符串之间能有这种神奇的关系是挺不容易的,我们希望能够找到一个简单的办法识别是否有解。

如果它们有公因子 abc,那么 str1 就是 mmm 个 abc 的重复,str2 是 nnn 个 abc 的重复,连起来就是 m+nm+nm+n 个 abc,好像 m+nm+nm+n 个 abc 跟 n+mn+mn+m 个 abc 是一样的。

所以如果 str1 + str2 === str2 + str1 就意味着有解。
我们也很容易想到 str1 + str2 !== str2 + str1 也是无解的充要条件。

当确定有解的情况下,最优解是长度为 gcd(str1.length, str2.length) 的字符串。

解决方法

    fun gcdOfStrings(str1: String, str2: String): String {
        if (str1 + str2 == str2 + str1) {
            val gcd = gcd(str1.length, str2.length)
            return str1.substring(0, gcd)
        } else {
            return ""
        }

    }

    fun gcd(x: Int, y: Int): Int {
        if (y == 0) {
            return x
        } else {
            return gcd(y, x % y)
        }
    }

总结

如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。约数和倍数都表示一个整数与另一个整数的关系,不能单独存在。如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约数。

欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。

如果一个问题,转换成数学问题,那么这个计算效率是提高了很多的。

高中、初中数学还是很重要的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值