Kubernetes 入门指南:概念与基础

目录

一、K8s 的诞生背景

二、K8s 的核心优势

三、K8s 的关键术语

四、K8s 的基础架构

五、应用场景

六、注意事项

七、总结

八、引用


摘要 :Kubernetes(K8s)作为容器编排的主流工具,在现代软件开发与运维领域占据重要地位。本文从零开始介绍 K8s 的基本概念,包括其诞生背景、核心优势以及关键术语,帮助读者快速入门并理解 K8s 的基础架构,开启容器编排的学习之旅。

一、K8s 的诞生背景

随着容器技术的兴起,容器的管理和编排成为难题。K8s 由谷歌开源,基于其多年大规模容器管理经验打造,旨在解决容器部署、扩展、管理的复杂性。

容器技术的普及使得应用能够以更轻量、更高效的方式进行打包与部署。然而,在实际生产环境中,仅仅能够创建容器是远远不够的。当容器数量增多、分布在不同的物理或虚拟机上时,如何高效地管理这些容器、实现自动化的部署与扩展、保障服务的高可用性成为新的挑战。

谷歌早在 2003 年就开始了内部容器技术的研究,并在 2006 年推出了 Borg 系统,用于管理大规模的容器集群。2014 年,谷歌将 Borg 的设计理念和经验技术进行整合,开源了 Kubernetes 项目,希望为整个行业提供一个强大、可靠的容器编排平台。

二、K8s 的核心优势

  1. 自动化部署与扩展

    • 自动完成容器的部署、启动、扩展和收缩,依据负载自动伸缩,提升资源利用率。在电商业务高峰期,如 “双十一” 购物节,电商平台需要快速扩展应用服务来应对流量洪峰。通过 K8s 的自动扩展功能,能够根据当前的订单处理量、用户访问量等指标,自动增加应用容器的副本数量,满足业务需求。而在流量低谷时,又能自动减少副本,节省计算资源。

    • K8s 通过 Deployment 等资源对象来管理应用的部署状态,定义期望的副本数量,控制器会持续监控实际运行的副本数目,与期望值进行比较,并自动调整,确保应用始终处于理想规模。

  2. 自我修复能力

    • 容器故障时自动重启,节点宕机时重新调度,保障应用持续运行。对于关键的金融服务应用,如网上银行的交易系统,一旦某个提供交易处理功能的容器出现故障停止工作,K8s 能够迅速检测到这一异常情况,并自动尝试重启该容器。如果所在节点发生硬件故障无法恢复,K8s 的调度器会将该节点上的容器重新分配到其他健康节点上重新启动,整个过程无需人工干预,极大地提高了系统的可用性和可靠性,确保用户交易的连续性。

  3. 跨基础设施运行

    • 可在公有云、私有云、混合云等多种环境运行,实现环境统一管理。企业可以根据自身业务需求和数据安全要求,灵活选择部署环境。例如,一些对数据安全和隐私要求极高的企业核心业务数据可以部署在私有云环境中,而面向互联网用户的一些非核心业务,如宣传网页、用户注册登录等功能,可以部署在成本较低的公有云平台上。通过 K8s 的统一管理,能够方便地实现资源的调配和应用的部署,无论底层基础设施如何变化,都为上层应用提供一致的运行环境和管理接口。

三、K8s 的关键术语

  1. Pod

    • 定义与功能:K8s 最小部署单元,包含一个或多个紧密关联的容器,共享存储和网络。Pod 内的容器共享同一个网络命名空间,即它们拥有相同的 IP 地址和端口空间,可以直接通过 localhost 进行通信。同时,Pod 也可以挂载共享存储卷,使得多个容器能够访问和共享存储数据。例如,一个 Web 应用可能由一个 Nginx 容器(用于处理 HTTP 请求)和一个应用容器(用于业务逻辑处理)组成,这两个容器放在同一个 Pod 内,它们可以通过本地通信快速交互,共享配置文件、静态资源等存储数据,共同完成 Web 服务的功能。

    • 生命周期管理:Pod 的生命周期由 K8s 控制器管理,包括创建、运行、终止等状态。当创建 Pod 时,K8s 会根据调度策略将其分配到合适的节点上,并启动其中的容器。在运行过程中,如果 Pod 所在节点出现故障或者容器健康检查失败,K8s 会按照预设的策略进行处理,如重新调度 Pod 或者重启容器。Pod 的终止也可以通过 API 或者命令行工具来触发,终止过程中会先发送终止信号给容器,等待一定时间(可通过配置设定)后再强制停止,以确保容器能够优雅地关闭,避免数据丢失或服务异常中断。

  2. Service

    • 定义与功能:定义逻辑上的 Pod 集合及访问策略,提供稳定的网络访问接口,实现负载均衡。在实际应用中,一个应用可能由多个副本 Pod 组成,Service 就可以将这些副本 Pod 聚合在一起,通过一个固定的 IP 地址和端口对外提供服务。当外部请求发送到 Service 时,Service 内部的负载均衡机制会将请求分发到后端的各个 Pod 上,实现流量的均匀分布,提高应用的并发处理能力和可用性。例如,一个在线视频服务应用,后端由多个处理视频流请求的 Pod 组成,Service 作为统一入口,根据请求的特征(如视频 ID、用户会话等)或者简单的轮询、随机等策略,将用户的播放请求分发给不同的 Pod 处理,保障服务的高效稳定运行。

    • 服务发现与 VIP:K8s 内部维护了一个 DNS 服务,为每个 Service 分配一个域名(通常是 <service-name>.<namespace>.svc.cluster.local)。当其他应用组件需要访问该 Service 时,可以通过域名解析获取 Service 的集群 IP 地址(Cluster IP),从而实现服务发现。Cluster IP 是一个虚拟的 IP 地址,在集群内部是固定的,它将外部请求转发到后端的 Pod 上,而 Pod 的具体 IP 地址和端口可能随着 Pod 的创建和销毁而变化,但 Service 的 Cluster IP 和端口保持不变,为应用提供了一个稳定的服务访问入口。

  3. Deployment

    • 定义与功能:声明式管理 Pod 和 ReplicaSet,描述目标状态,自动处理更新和回滚。Deployment 允许用户以声明的方式指定期望的应用运行状态,包括容器镜像版本、副本数量、资源请求和限制等参数。例如,用户可以定义一个 Deployment,期望运行 3 个副本的 Nginx 容器,指定使用特定版本的 Nginx 镜像,并且每个容器请求 256MiB 的内存和 100m 的 CPU 资源。K8s 的 Deployment 控制器会持续监控实际运行状态与期望状态的差异,自动调整 ReplicaSet 来确保 Pod 的副本数量符合要求,并且在更新镜像或者配置时,按照指定的更新策略(如滚动更新)逐步替换旧的 Pod,同时在更新出现问题时能够自动回滚到之前的稳定版本,保障应用的平稳升级和运行。

四、K8s 的基础架构

  1. 架构概览

    • K8s 采用主从架构,由一个或多个 Master 节点(控制平面)和多个 Worker 节点组成。Master 节点负责集群的管理和控制,Worker 节点负责运行实际的工作负载(容器)。

  2. Master 节点组件

    • API Server :作为 K8s 的门面,提供 RESTful 接口,处理所有集群通信,对外暴露操作接口,是控制平面的核心组件。它是用户、命令行工具(如 kubectl)以及其他组件与 K8s 集群交互的桥梁。所有的对集群资源的增删改查操作都必须通过 API Server 进行。例如,当用户使用 kubectl create 命令创建一个 Deployment 时,kubectl 会向 API Server 发送一个 HTTP POST 请求,携带 Deployment 的定义数据,API Server 验证请求的合法性、对数据进行解析和校验后,将操作转发给后续的处理组件。

    • Controller Manager :运行多个控制器(如节点控制器、复制控制器等),监控集群状态,确保实际状态与期望状态一致,维持集群稳定运行。这些控制器以协程的方式在 Controller Manager 内运行,不断地从 etcd 存储中获取资源对象的期望状态和实际状态,并进行比较。以节点控制器为例,它会定期检查节点的心跳信息(由 Kubelet 定期发送),如果发现某个节点长时间没有发送心跳,就会将该节点标记为 “NotReady” 状态,并根据策略驱逐节点上的 Pod 或者调整调度策略,避免新的 Pod 被调度到故障节点上。复制控制器则负责确保 Pod 的副本数量符合 Deployment 等资源对象的期望值,当副本数量不足时创建新的 Pod,过多时删除多余的 Pod。

    • Scheduler :负责资源调度,根据资源需求和策略,将 Pod 分配到合适节点。它 constantly 监听 API Server 中 Pod 的创建事件,对于每一个新创建且未分配节点的 Pod,Scheduler 会根据一系列的调度算法和策略(如节点资源利用率、亲和性规则、Pod 间反亲和性规则等)进行综合评估,选择最合适的一个或多个节点将 Pod 调度过去。例如,一个对存储性能要求较高的数据库应用 Pod,Scheduler 会优先考虑将它调度到配置了高性能存储设备的节点上;对于有多个副本需要部署且希望提高容灾能力的应用,会根据反亲和性规则尽量将副本分布在不同的节点、甚至不同的机架或机房的节点上。

  3. Worker 节点组件

    • Kubelet :节点代理,管理 Pod 及容器生命周期,与 Master 协作完成容器创建、启动、监控等操作。它是 Worker 节点上主要的管理组件,负责与 Master 节点进行通信,定期向 Master 汇报节点的状态信息(如节点资源使用情况、运行状态等),同时接收来自 Master 的指令(如创建、删除 Pod 等操作)。当 Scheduler 将 Pod 调度到当前节点时,Kubelet 会根据 Pod 的定义配置(从 API Server 获取)通过容器运行时(如 Docker、Containerd 等)来创建容器,并启动容器内的应用程序进程。在容器运行过程中,Kubelet 还会持续监控容器的健康状态,定期执行用户定义的就绪探针和存活探针,如果容器不健康,会按照策略重启容器或者上报给 Master 进行进一步处理。

    • Kube-Proxy :实现服务的网络代理和负载均衡,维护网络规则,确保服务间通信顺畅。它在每个 Worker 节点上运行,负责实现 K8s Service 的网络通信功能。对于 Cluster IP 的访问请求,Kube-Proxy 会根据 Service 的定义和后端 Pod 的实际情况,通过修改节点上的 iptables 规则或者利用更高效的 ipvs 模式,将请求正确地转发到后端的 Pod 上。例如,当一个外部客户端访问 Service 的 Cluster IP 和端口时,Kube-Proxy 会根据 Service 的负载均衡策略(如轮询、随机等)选择一个后端健康 Pod,将请求转发到该 Pod 的 IP 和端口上,从而实现服务的负载均衡和网络代理功能,保障服务间的可靠通信。

五、应用场景

  1. Web 应用部署与扩展

    • 以一个典型的电商网站为例,前端由多个 Web 服务器容器组成,用于处理用户的页面请求、商品展示等操作;后端有数据库容器、缓存容器、订单处理服务容器等。通过 K8s 部署,可以将前端 Web 服务器配置为多个副本,以应对高并发的用户访问。当网站促销活动导致流量激增时,K8s 的自动扩展功能能够根据预设的 CPU 使用率、请求数量等指标,自动增加 Web 服务器容器的副本数量,提高网站的承载能力。同时,Service 对象可以将这些 Web 服务器容器聚合在一起,为用户提供更加稳定、高效的访问入口,实现负载均衡,确保用户能够快速访问网站,浏览商品信息,提交订单。

  2. 微服务架构管理

    • 在微服务架构下,一个应用被拆分为多个小型、独立的服务模块,每个模块运行在自己的容器中。例如,一个视频点播应用可以分为用户认证服务、视频存储服务、视频编码服务、推荐服务等多个微服务。K8s 可以方便地管理这些微服务容器的部署、扩展和更新。通过定义不同的 Deployment 来管理各个微服务的副本数量和镜像版本,Service 对象可以实现微服务之间的松耦合通信。例如,用户认证服务通过 Service 暴露一个稳定的网络接口,视频存储服务在需要验证用户身份时,只需要向该 Service 发送请求,而不关心具体哪个用户认证服务的 Pod 来处理请求。这种架构使得各个微服务能够独立地扩展和更新,某个微服务出现问题时,不会影响整个应用的运行,保障了应用的高可用性和灵活性。

  3. 持续集成与持续部署(CI/CD)

    • 在软件开发的 CI/CD 流程中,K8s 可以与 Jenkins、GitLab CI 等工具集成,实现应用的自动化部署和测试。当开发人员提交代码到版本控制系统(如 Git)后,CI 工具会自动触发构建流程,生成新的容器镜像并推送到镜像仓库。然后,通过 K8s 的 Deployment 更新策略,将新的镜像版本部署到测试环境或者生产环境中。例如,在测试环境中,K8s 可以快速创建一个隔离的测试命名空间,部署应用的各个组件容器,并启动自动化测试脚本。测试完成后,根据测试结果决定是否继续推进到生产环境。在生产环境中,K8s 的滚动更新功能可以确保应用在更新过程中始终保持可用,新旧版本的容器逐步替换,避免了服务中断,提高了软件交付的效率和质量,加速了产品的迭代周期。

六、注意事项

  1. 资源规划与配置

    • 在部署 K8s 集群之前,需要对集群的资源进行合理规划,包括节点的 CPU、内存、存储等资源的分配。要根据应用的实际需求和预期负载来确定集群的规模和节点配置。例如,对于计算密集型的应用,如大数据处理、人工智能训练等,需要配置具有高性能 CPU 和大量内存的节点;而对于存储密集型的应用,如数据库应用,则需要关注节点的存储容量、I/O 性能等指标。同时,在创建 Pod 和容器时,合理设置资源请求和限制,避免资源浪费或者过度争抢导致应用性能下降。如果资源请求设置过低,可能导致容器无法获得足够的资源正常运行;而资源限制设置过高,则可能使节点资源被某些容器过度占用,影响其他容器的运行。

  2. 网络配置复杂性

    • K8s 的网络模型要求 Pod 之间能够直接通信,这在实际部署中可能涉及到复杂的网络配置。不同的网络插件(如 Flannel、Calico、Weave 等)有不同的工作原理和适用场景,选择合适的网络插件并正确配置网络参数是确保集群网络正常工作的关键。例如,在多节点集群中,使用 Flannel 网络插件时,需要正确配置 Flannel 的网络 CIDR、VXLAN 端口等参数,确保各个节点上的 Pod 网络能够互通。同时,还要注意网络的安全性,合理配置网络策略(NetworkPolicy),限制不必要的网络访问,防止潜在的安全威胁。例如,对于一个包含前端服务和后端数据库服务的应用,可以配置网络策略只允许前端服务的 Pod 访问后端数据库服务的特定端口,阻止其他外部流量访问数据库服务,降低数据泄露的风险。

  3. 学习曲线与运维成本

    • K8s 虽然功能强大,但其复杂性也不容忽视。对于初学者来说,需要掌握众多的概念、命令和工具,学习曲线较陡。而且,在实际运维过程中,需要处理各种各样的问题,如集群节点故障、Pod 频繁重启、网络连接异常、资源不足等,这对运维人员的技术水平和经验要求较高。企业需要投入一定的时间和资源进行人员培训和技术积累,建立完善的运维管理体系。例如,要定期备份 etcd 数据,防止集群配置丢失;监控集群的资源使用情况,及时发现和处理资源瓶颈;制定故障应急响应预案,快速恢复集群服务等,以降低运维成本和风险,确保 K8s 集群的稳定运行。

七、总结

K8s 作为容器编排利器,凭借其强大功能简化容器管理。掌握基础概念与架构是深入学习的前提,后续将逐步深入探索 K8s 各组件及应用场景。

本次入门指南详细介绍了 K8s 的诞生背景,即容器技术发展带来的管理挑战促使谷歌基于 Borg 经验开源了 K8s。核心优势方面,自动化部署与扩展能应对业务负载波动,自我修复能力保障应用稳定,跨基础设施运行提供灵活部署选择。关键术语 Pod、Service、Deployment 的功能和作用是理解 K8s 资源管理的基础。基础架构中 Master 和 Worker 节点的各组件协同工作实现集群管控。应用场景涵盖 Web 应用、微服务、CI/CD 等多领域,展示其广泛适用性。同时,也指出了资源规划、网络配置、学习运维等方面的注意事项,提醒读者在实际应用中需要谨慎处理。

后续学习中,将进一步深入研究 K8s 各组件的工作原理、网络策略配置、存储卷管理等进阶内容,通过实践操作和案例分析,不断加深对 K8s 的理解和掌握,为在云原生时代高效构建和管理应用集群奠定坚实基础。

八、引用

  1. Kubernetes 官方文档:Kubernetes Documentation | Kubernetes

  2. 《Kubernetes 权威指南》

  3. Google Borg 论文:https://research.google/pubs/pub43438.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CarlowZJ

我的文章对你有用的话,可以支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值