📑 摘要
AI 应用普遍以容器化交付。Harbor 作为 CNCF 毕业级镜像仓库,提供 镜像托管、漏洞扫描、签名验证、多租户、复制策略 等能力。
本文面向中国 AI 开发者,手把手带你完成「单机 PoC → 生产高可用 → DevSecOps 闭环」的全旅程。
你将获得:
- 1 张思维导图梳理知识网络
- 3 张 Mermaid 图(架构、流程、时序)
- 4 段可直接运行的 Python 脚本(镜像推送、扫描、策略下发、审计)
- 1 份 2 周落地甘特图
- 常见坑与最佳实践合集
思维导图:Harbor 全景知识树
mindmap
root((Harbor))
快速起步
docker-compose
helm-chart
核心能力
镜像仓库
安全扫描(Clair/Trivy)
签名与验证(Notary/Cosign)
多租户(项目/机器人账户)
复制策略(主备/多云)
集成生态
CI/CD(Jenkins/GitLab CI)
Kubernetes(Containerd/CRI-O)
LDAP/AD/OIDC
生产运维
高可用
备份恢复
审计日志
Prometheus 监控
AI 场景案例
训练镜像版本管理
模型分发
A/B 测试
1️⃣ 为什么选择 Harbor?
在 AI 应用开发和部署过程中,容器化技术已经成为主流方案。然而,随着业务规模的扩大,如何安全高效地管理容器镜像成为一个关键问题。Harbor 作为 CNCF 毕业项目,为企业级镜像管理提供了完整的解决方案。
维度 | Docker Hub | 自建 Registry | Harbor 方案 |
---|---|---|---|
安全 | 公有云 | 需自行加固 | 漏洞扫描+签名+RBAC |
合规 | 需翻墙 | 需二次开发 | 审计日志+存储加密 |
成本 | 按流量付费 | 运维成本高 | 开源免费+国产化支持 |
AI 特色 | 无 | 无 | 支持大镜像断点续传 |
💡 AI 场景痛点:PyTorch/TensorFlow 镜像动辄数 GB,Harbor 断点续传可节省 70% 时间。
2️⃣ 架构透视:从单机到高可用
2.1 单机 PoC 架构(10 min 起步)
对于初次接触 Harbor 的开发者,推荐使用单机部署模式进行概念验证(PoC)。
一键脚本:
curl -sSL https://get.harbor.io | bash
2.2 生产高可用架构(3 Master + 3 Worker)
在生产环境中,我们需要考虑高可用性和容错能力,确保服务的连续性。