大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。
本文主要介绍了Tensorflow 2.x(keras)源码详解之第七章:keras中的tf.keras.layers,希望能对学习TensorFlow 2的同学有所帮助。
文章目录
1. 综述
layers是重点部分,该部分包含了各种网络结构以及激活函数等。下面一一讲解
2. 激活函数Activation
tf.keras.layers.Activation(activation, **kwargs)
因此参数activation为具体的激活函数。keras中activation参数的值一般取如下:
‘elu’, ‘exponential’, ‘hard_sigmoind’, ‘linear’, ‘relu’, ‘selu’, ‘sigmoid’, ‘softmax’, ‘softplus’, ‘softsign’, ‘swish’, ‘tanh’,或者自定义激活函数
课程2中单独讲述了激活函数,当时是tf.keras.activation.relu(),而此时为tf.keras.layers.Activation(‘relu’)。这两者的有什么区别呢?
tf.