Tensorflow 2.x(keras)源码详解之第七章:keras中的tf.keras.layers

  大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。

  本文主要介绍了Tensorflow 2.x(keras)源码详解之第七章:keras中的tf.keras.layers,希望能对学习TensorFlow 2的同学有所帮助。

1. 综述

layers是重点部分,该部分包含了各种网络结构以及激活函数等。下面一一讲解

2. 激活函数Activation

tf.keras.layers.Activation(activation, **kwargs)
因此参数activation为具体的激活函数。keras中activation参数的值一般取如下:
‘elu’, ‘exponential’, ‘hard_sigmoind’, ‘linear’, ‘relu’, ‘selu’, ‘sigmoid’, ‘softmax’, ‘softplus’, ‘softsign’, ‘swish’, ‘tanh’,或者自定义激活函数
课程2中单独讲述了激活函数,当时是tf.keras.activation.relu(),而此时为tf.keras.layers.Activation(‘relu’)。这两者的有什么区别呢?
tf.

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱编程的喵喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值