文章目录 1. 多元线性回归基本假定与表达式 1.1 基本假定 1.2 具体值的表达方式 1.3 向量表达形式 1.4 矩阵表达方式 2. 多元线性回归求解 2.1 矩阵解 2.2 代数解 2.3 几何解 2.3.1 线性方程组的几何意义 2.3.2 最小二乘法 2.4 正交投影矩阵 3. sklearn中linear model模块简介 3.1 总体概述 3.2 linear_model.LinearRegression 4. 多重共线性 5. 岭回归 5.1 原理简介 5.2 sklearn简介 5.3 选择最佳参数 α \alpha α 5.3.1 岭迹图 5.3.2 RidgeCV 6. Lasso回归 6.1 原理简介 6.2 特征选择 6.3 选择最佳的正则化参数 7.普通线性回归、岭回归、lasso回归几何意义 7.1 岭回归与普通线性回归 7.2 Lasso与普通最小二乘 7.3 小结 8. 多项式回归 1. 多元线性回归基本假定与表达式 1.1 基本假定 回归模型是正确设定的 解释变量 x 1 , x 2 , . . , x m x_1,x_2,..,x_m x1