【题目描述】
给定一个正整数 k,有 k 次询问,每次给定三个正整数 ni, ei, di,求两个正整数 pi, qi,
使 ni=pi×qi, ei×di=(pi−1)(qi−1)+1。
【输入】
第一行一个正整数 k,表示有 k 次询问。
接下来 k 行,第 i 行三个正整数 ni, di, ei。
【输出】
输出 k行,每行两个正整数 pi, qi 表示答案。
为使输出统一,你应当保证 pi≤ qi。
如果无解,请输出 NO。
【输入样例】
10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109
【输出样例】
2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
6 88
【提示】
【数据范围】
以下记 m=n−e×d+2。
保证对于 100% 的数据,1≤k≤10^5,对于任意的 1 ≤ i ≤ k,1 ≤ ni ≤ 10^18, 1 ≤ei × di ≤ 10^18, 1 ≤ m ≤ 10^9。
测试点编号 | k ≤ | n ≤ | m ≤ | 特殊性质 |
1 | 10^3 | 10^3 | 10^3 | 保证有解 |
2 | 无 | |||
3 | 10^9 | 6 ×10^4 | 保证有解 | |
4 | 无 | |||
5 | 10^9 | 保证有解 | ||
6 | 无 | |||
7 | 10^5 | 10^18 | 保证若有解则 p = q | |
8 | 保证有解 | |||
9 | 无 | |||
10 |
【解析】
看到ni=pi×qi, ei×di=(pi−1)(qi−1)+1,最先想到的是枚举p和q。结合p<=q,可以枚举p从1到根号n;
可以通过60%的数据。
详见代码:
#include <bits/stdc++.h>
using namespace std;
int main() {
int k;
scanf("%d",&k);
for (int i=1;i<=k;i++){
long long n,d,e;
scanf("%lld %lld %lld",&n,&d,&e);
bool flag=1;
for (long long p=1;p*p<=n;p++){
long long q;
if (n%p==0){
q=n/p;
if (d*e==(p-1)*(q-1)+1){
printf("%lld %lld\n",p,q);
flag=0;
break;
}
}
}
if (flag==1){
printf("NO\n");
}
}
return 0;
}
第7个点因为保证p=q,理论上则可以通过特判得10分(实际没测试);
详见代码:
#include <bits/stdc++.h>
using namespace std;
int main() {
int k;
scanf("%d", &k);
for (int i = 1; i <= k; i++) {
long long n, d, e;
scanf("%lld %lld %lld", &n, &d, &e);
if (n > 1e9) {
long long p, q;
p = sqrt(n);
q = p;
if (n == p * q && d * e == (p - 1) * (q - 1) + 1) {
printf("%lld %lld\n", p, q);
} else {
printf("NO\n");
}
return 0;
}
bool flag = 1;
for (long long p = 1; p * p <= n; p++) {
long long q;
if (n % p == 0) {
q = n / p;
if (d * e == (p - 1) * (q - 1) + 1) {
printf("%lld %lld\n", p, q);
flag = 0;
break;
}
}
}
if (flag == 1) {
printf("NO\n");
}
}
return 0;
}
根据题面给的m=n−e×d+2,结合p*q=n;可推出m=p*q-(p*q-p-q+1+1)+2,即m=-(p+q)可以知道p,q为二元一次方程x^2-mx+n=0的两个根,我们只需要验证这两个根是否是整数即可;
详见代码(AC):
#include <bits/stdc++.h>
using namespace std;
int main() {
int k;
long long n, d, e, m;
cin >> k;
for (int i = 1; i <= k; i++) {
scanf("%lld %lld %lld", &n, &d, &e);
m = n - e * d + 2;
long long p, det;
det = m * m - 4 * n;//德尔塔=b^2-4*a*c;
if (det < 0) {//德尔塔小于零则无解
printf("NO\n");
continue;
} else {
p = (m - sqrt(det)) / 2;//较小的那个解
if (p * (m - p) == n && p > 0)
printf("%lld %lld\n", p, m - p);
else
printf("NO\n");
}
}
return 0;
}