破灭
时间限制:1000 ms
内存限制:256 MB
问题描述
世界濒临破灭。Gleipse 正带领着 nnn 个魔法师试图拯救世界。
Gleipse 将 nnn 个魔法师排成一排。每个魔法师手上有两块水晶,每块水晶要么是红色的,要么是蓝色的。我们将第 iii 个魔法师手上有的两块水晶记作 aia_iai,其意义为:
- ai=0a_i=0ai=0:两块水晶都是红色的;
- ai=1a_i=1ai=1:两块水晶,一块是红色的,一块是蓝色的;
- ai=2a_i=2ai=2:两块水晶都是蓝色的。
现在 Gleipse 要收集所有人的水晶排成一行。他命令所有魔法师进行如下操作共 2n2n2n 次:
- 所有有水晶的魔法师同时选择自己手中的一块水晶,交给前面的一个魔法师。例如魔法师 iii 将水晶交给魔法师 i−1i-1i−1。特殊的,魔法师 111 将水晶交给 Gleipse。
- Gleipse 将收到的水晶放在收集的水晶的队列末尾。
最终 Gleipse 将得到一个长度为 2n2n2n 的水晶队列。
因为 2n2n2n 块水晶足以阻止世界的破灭,所以 Gleipse 好奇所有可能出现的不同的水晶队列的数量。由于数量可能太多,所以 Gleipse 只要求答案对 998244353998244353998244353 取模的值。
输入格式
第一行一个整数 nnn,表示魔法师的数量。
第二行共 nnn 个整数,表示 a1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,an。
输出格式
一行一个整数,表示答案对 998244353998244353998244353 取模的值。
数据范围
- 对于 30%30 \%30% 的数据,1≤n≤61\leq n \leq 61≤n≤6。
- 对于 60%60 \%60% 的数据,1≤n≤2001\leq n \leq 2001≤n≤200。
- 对于 100%100 \%100% 的数据,1≤n≤2×103,0≤ai≤21\leq n \leq 2 \times 10^3, 0 \leq a_i \leq 21≤n≤2×103,0≤ai≤2。
样例
样例输入
4
1 2 1 0
样例输出
55
解析
使用动态规划,状态 dp[i][j]dp[i][j]dp[i][j] 表示 iii 个蓝水晶和 jjj 个红水晶的方案数,通过递推累计状态转移。最终答案为 dp[蓝水晶总数][红水晶总数]dp[蓝水晶总数][红水晶总数]dp[蓝水晶总数][红水晶总数],时间复杂度 O(n2)O(n^2)O(n2)。详见代码:
#include<bits/stdc++.h>
using namespace std;
int n;
int b[4005];//前i个魔法师手中的蓝色水晶数量
int r[4005];//前i个魔法师手中的红色水晶数量
const int mod=998244353;
long long dp[4005][4005];//dp[i][j]表示i个蓝水晶j个红水晶的方案数
int main() {
cin>>n;
for(int i=1;i<=n;i++){
cin>>b[i];
b[i]+=b[i-1];
r[i]=2*i-b[i];
}
for(int i=0;i<=b[n];i++){//枚举蓝水晶数量
for(int j=0;j<=r[n];j++){//枚举红水晶数量
if (i==0&&j==0) dp[i][j]=1;//默认0个蓝水晶0个红水晶方案书为1
int k=i+j;//i个蓝水晶和j个红水晶需要k轮
if(k<n&&(i>b[k]||j>r[k])) dp[i][j]=0;//到第k轮如果水晶不足方案数为0
else{
if (i>0) dp[i][j]+=dp[i-1][j];//在上一轮基础上加个蓝水晶
if (j>0) dp[i][j]+=dp[i][j-1];//在上一轮基础上加个红水晶
}
dp[i][j]%=mod;
}
}
cout<<dp[b[n]][r[n]];
return 0;
}