torch torchvision 下载安装与使用

本文提供了PyTorch及其配套库torchvision的版本对应关系表,并详细介绍了如何从官方网站下载及安装指定版本的PyTorch和torchvision,确保版本匹配以避免安装过程中出现的各种问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文仅供学习交流使用,如侵立删!demo下载见文末

torch和torchvision版本对应关系表

在这里插入图片描述


torch 下载

官方下载地址:https://download.pytorch.org/whl/torch_stable.html
选择对应版本下载即可在这里插入图片描述


torch 安装

安装命令:
pip install torch-1.5.1+cpu-cp36-cp36m-win_amd64.whl
pip install torchvision-0.6.0+cpu-cp36-cp36m-win_amd64.whl
版本一定要和匹配不然会出一大堆乱七八糟的问题
在这里插入图片描述


本文仅供学习交流使用,如侵立删!

### 如何逐步安装 PyTorchtorchvision 库 为了成功安装 PyTorch 及其配套库 `torchvision`,可以按照以下方法操作: #### 虚拟环境的创建 通过 Anaconda 创建一个 Python 虚拟环境来管理依赖项是一个推荐的做法。以下是具体命令: ```bash conda create --name py39 python=3.9 ``` 激活刚刚创建的虚拟环境: ```bash conda activate py39 ``` 此部分的操作确保了一个干净的开发环境[^2]。 #### 安装 PyTorch 访问 [PyTorch官方网站](https://pytorch.org/get-started/locally/) 并根据您的硬件配置选择合适的安装选项。例如,如果您已经安装了特定版本的 CUDA,则应选择支持该版本的 PyTorch 包。假设您希望安装带有 CUDA 支持的 PyTorch(适用于 NVIDIA 显卡),可以通过 pip 或 conda 执行如下命令之一: 使用 Conda 进行安装: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 或者使用 Pip 来完成相同的目标: ```bash pip install torch torchvision torchaudio ``` 上述命令会自动处理所有必要的依赖关系,并将指定版本的 PyTorch 下载到环境中[^1]。 #### 验证安装 确认安装无误的一个简单方式是运行一段测试代码,在 Python 解释器中执行下面几行脚本来验证是否能够正常加载模块并检测 GPU 是否可用: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 如果输出显示 True 表明当前系统已正确设置好 GPU 加速功能。 --- ### 注意事项 - 如果未配备兼容的显卡驱动程序或不打算利用 GPU 计算资源,请改选 CPU-only 的发行版。 - 对于移动平台开发者而言,TensorFlow Lite 提供了一些针对移动端优化的内容链接可供参考[^3],不过这并不涉及 PyTorch 的范畴。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拉灯的小手

您的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值