PyTorch Models

本文讨论了在PyTorch中使用torch.save保存模型时的不同方法,包括整个模型和只保存参数的区别,以及如何加载这些模型。重点介绍了state_dict的使用和路径管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Overview

pth模型保存时是按照“整个模型保存”和“只保存模型参数”会影响模型的加载和访问方式

torch.save(vgg16, "vgg16.pt") 
torch.save(vgg16,"vgg16.ckpt") 
torch.save(vgg16,"vgg16.pth") 
torch.save(vgg16,"vgg16.pkl")

Save & Load Models

保存整个模型

torch.save(model, PATH)
import torch
if __name__ == '__main__':
    model_pth = r'D:\${modelPath}\${modelName}.pth'
    net = torch.load(model_pth, map_location=torch.device('cpu'))
    for key, value in net["state_dict"].items():
        print(key,value.size(),sep="  ")

只保存模型参数

torch.save(net.state_dict(),path2)
model.load_state_dict(torch.load(path2))
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晨光ABC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值