全连接层:
在讨论卷积神经网络时,若直接在输入层采用全连接的方式,会导致权值过多而无法训练,但是全连接层并非无用武之地,在卷积神经网络特征提取完成后,这时的特征维度相对于原始的图片输入已经大大减小,这时可以采用全连接层来最大限度利用每一个特征。
全连接层的每一个节点都与上一层的所有节点相连,用来把前边提取到的特征综合起来。

I为输入,O为输出。
**前向的传导过程为:**

反向传导的过程为:
反向传导的目的有两个:
- 向前传递梯度;
- 更新w和b;
1.向前传递梯度,最终误差在每一层以梯度的形式向前传递。
已知传递到该层的梯度为:
现求:
输出对输入的偏导为:
链式求导过程为:

2.更新w

**3.更新b**
