全连接层(FullConnect Layer)

本文深入探讨了卷积神经网络中的全连接层作用及其工作原理。介绍了全连接层如何通过连接所有节点来综合提取到的特征,并详细解释了其在前向传播及反向传播过程中的数学运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全连接层:
在讨论卷积神经网络时,若直接在输入层采用全连接的方式,会导致权值过多而无法训练,但是全连接层并非无用武之地,在卷积神经网络特征提取完成后,这时的特征维度相对于原始的图片输入已经大大减小,这时可以采用全连接层来最大限度利用每一个特征。

全连接层的每一个节点都与上一层的所有节点相连,用来把前边提取到的特征综合起来。

![这里写图片描述](https://img-blog.csdnimg.cn/img_convert/810a57218f498692c8bfcd72c9a9be33.png)
I为输入,O为输出。 **前向的传导过程为:**
![这里写图片描述](https://img-blog.csdnimg.cn/img_convert/e87ac3a22f1c1e239994e01a18f97025.png)

反向传导的过程为:
反向传导的目的有两个:

  1. 向前传递梯度;
  2. 更新w和b;

1.向前传递梯度,最终误差在每一层以梯度的形式向前传递。
已知传递到该层的梯度为:这里写图片描述
现求:这里写图片描述
输出对输入的偏导为:这里写图片描述

链式求导过程为:

![这里写图片描述](https://img-blog.csdnimg.cn/img_convert/386d50950a7f2ed07b386ee0a1c57f35.png)

2.更新w

![这里写图片描述](https://img-blog.csdnimg.cn/img_convert/759ae414da84b24db9e42542a0d093eb.png)
**3.更新b**
![这里写图片描述](https://img-blog.csdnimg.cn/img_convert/aeaade1a9bf859bf3f7a1d3ab63281dd.png)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CHAO_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值