VggNet

VGG论文

《Very Deep Convolutional Networks For Large-Scale Image Recongnition》

VGG网络结构描述

在这里插入图片描述
作者实验了6中网络结构,分别是VGG-11,VGG-13,VGG-16,VGG-19,网络的深度从A到E递增。

VGG16特点

优点:

  • 核心优点在于使用多个较小卷积核的卷积层替代一个卷积核较大的卷积层,一方面可以减少参数,另一方面相当于是进行了更多的非线性映射,增加了网络的拟合能力。
    例如:使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核。
  • 相较与AlexNet,去掉了LRN层,作者认为深度网络中LRN层的作用不明显。 验证了通过不断加深网络结构可以提升性能。
  • VGGNet的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。 广泛用于特征提取任务。

缺点:
耗费计算资源,使用了更多的参数,内存占用(140M),绝大多数的参数来自于第一个全连接层,故网络层数的增加,参数量并未发生太大变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CHAO_^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值