VGG论文
《Very Deep Convolutional Networks For Large-Scale Image Recongnition》
VGG网络结构描述
作者实验了6中网络结构,分别是VGG-11,VGG-13,VGG-16,VGG-19,网络的深度从A到E递增。
VGG16特点
优点:
- 核心优点在于使用多个较小卷积核的卷积层替代一个卷积核较大的卷积层,一方面可以减少参数,另一方面相当于是进行了更多的非线性映射,增加了网络的拟合能力。
例如:使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核。 - 相较与AlexNet,去掉了LRN层,作者认为深度网络中LRN层的作用不明显。 验证了通过不断加深网络结构可以提升性能。
- VGGNet的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。 广泛用于特征提取任务。
缺点:
耗费计算资源,使用了更多的参数,内存占用(140M),绝大多数的参数来自于第一个全连接层,故网络层数的增加,参数量并未发生太大变化。