一、前言
在大模型技术蓬勃发展的今天,如何让AI更精准地捕捉用户意图,成为落地应用的核心挑战。本文将以Qwen3-4B这一开源大模型为实验对象,借助LLaMA-Factory这一高效微调框架,探索意图理解任务的优化路径。通过低秩适配(LoRA)等轻量化技术,我们将在有限算力下实现模型对用户query的深层语义解析。从数据清洗、提示词工程到损失函数设计,本文将揭秘如何让通用大模型“垂直进化”,最终实现意图识别准确率提升30%的实战效果。
二、术语介绍
2.1. LoRA微调
LoRA (Low-Rank Adaptation) 用于微调大型语言模型 (LLM)。 是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。
2.2. 参数高效微调(PEFT)
仅微调少量 (额外) 模型参数,同时冻结预训练 LLM 的大部分参数,从而大大降低了计算和存储成本。
2.3. LLaMA-Factory
是一个与 LLaMA(Large Language Model Meta AI)相关的项目,旨在为用户提供一种简化和优化的方式来训练、微调和部署大型语言模型。该工具通常包括一系列功能,如数据处理、模型配置、训练监控等,以帮助研究人员和开发者更高效地使用 LLaMA 模型