DWD层数据准备

一、需求分析及实现思路

1.1、 分层需求分析

  建设实时数仓的目的,主要是增加数据计算的复用性。每次新增加统计需求时,不至于从原始数据进行计算,而是从半成品继续加工而成。我们这里从 kafka 的 ods 层读取用户行为日志以及业务数据,并进行简单处理,写回到 kafka 作为 dwd 层。
在这里插入图片描述

1.2、 每层的职能

分层数据描述生成计算工具存储媒介
ODS原始数据,日志和业务数据日志服务器,maxwell/canalkafka
DWD根据数据对象为单位进行分流,比如订单、页面访问等等。FLINKkafka
DWM对于部分数据对象进行进一步加工,比如独立访问、跳出行为。依旧是明细数据。FLINKkafka
DIM维度数据FLINKHBase
DWS根据某个维度主题将多个事实数据轻度聚合,形成主题宽表。FLINKClickhouse
ADS把 Clickhouse 中的数据根据可视化需要进行筛选聚合。Clickhouse, SQL可视化展示

二、 DWD 层数据准备实现思路

➢ 功能 1:环境搭建
➢ 功能 2:计算用户行为日志 DWD 层
➢ 功能 3:计算业务数据 DWD 层

2.1、环境搭建

目录作用
app产生各层数据的 flink 任务
bean数据对象
common公共常量
utils工具类

2.2、计算用户行为日志 DWD 层

2.3、计算业务数据 DWD 层

关注我的公众号【宝哥大数据】, 更多干货

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值