PAT甲级1078 Hashing (25 分)题解

本文介绍了一种解决哈希表冲突的方法——平方探测法。通过实例代码演示了如何在遍历到表长TSize-1时,利用平方探测法避免扎堆现象,寻找空闲位置插入元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
\quad这道题主要考察平方探测法来解决冲突。下面来讲解一下平方探测法的使用:在平方探查法中,为了尽可能避免扎堆现象,当表中下标为H(key)的位置被占时,将按下面 的顺序检查表中的位置:H(key)+12H(key)+1^2H(key)+12H(key)+22H(key)+2^2H(key)+22H(key)+32H(key)+3^2H(key)+32…如果检查过程中H(key)+k2H(key)+k^2H(key)+k2超过了表长TSize,那么就把H(key)+k2H(key)+k^2H(key)+k2对表长TSize取模。如果k在[0, Tsize)范围内都无法找到地址,那么当k>=Tsize时也肯定无法找到,因此只需遍历k从[0, Tsize-1]即可。

#include <iostream>
using namespace std;

const int maxn = 1e4+10;  // 需要开大一点,当给定数M为10000时离M最近的素数为10007
int N, M, a;
int vis[maxn];
bool isPrime(int n)
{	
	if(n==1) return false;
	for (int i = 2; i*i <= n; ++i){
		if(n%i==0) return false;
	}
	return true;
}
int main(int argc, char const *argv[])
{
	cin >> M >> N;
	while(!isPrime(M)) M++;
	while(N--)
	{
		cin >> a;
		bool flag = false;
		for (int i = 0; i < M; ++i){ // 平方探测法,遍历到TSize-1
			int temp = (a+i*i)%M;
			if(vis[temp]==0) {
				cout << temp;
				vis[temp] = 1;
				flag = true; 
				break;
			}
		}
		if(!flag) cout << "-";
		if(N) cout << " ";
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值