\quad这道题主要考察平方探测法来解决冲突。下面来讲解一下平方探测法的使用:在平方探查法中,为了尽可能避免扎堆现象,当表中下标为H(key)的位置被占时,将按下面 的顺序检查表中的位置:H(key)+12H(key)+1^2H(key)+12、H(key)+22H(key)+2^2H(key)+22、H(key)+32H(key)+3^2H(key)+32…如果检查过程中H(key)+k2H(key)+k^2H(key)+k2超过了表长TSize,那么就把H(key)+k2H(key)+k^2H(key)+k2对表长TSize取模。如果k在[0, Tsize)范围内都无法找到地址,那么当k>=Tsize时也肯定无法找到,因此只需遍历k从[0, Tsize-1]即可。
#include <iostream>
using namespace std;
const int maxn = 1e4+10; // 需要开大一点,当给定数M为10000时离M最近的素数为10007
int N, M, a;
int vis[maxn];
bool isPrime(int n)
{
if(n==1) return false;
for (int i = 2; i*i <= n; ++i){
if(n%i==0) return false;
}
return true;
}
int main(int argc, char const *argv[])
{
cin >> M >> N;
while(!isPrime(M)) M++;
while(N--)
{
cin >> a;
bool flag = false;
for (int i = 0; i < M; ++i){ // 平方探测法,遍历到TSize-1
int temp = (a+i*i)%M;
if(vis[temp]==0) {
cout << temp;
vis[temp] = 1;
flag = true;
break;
}
}
if(!flag) cout << "-";
if(N) cout << " ";
}
return 0;
}