算法的学习笔记—数据流中的中位数(牛客JZ41)

img

😀前言
在处理动态数据时,实时计算中位数是一个经典问题。中位数是排序后处于中间位置的数值,数据流中的中位数计算面临两个挑战:首先是数据量的动态变化,其次是需要保持元素的有序性。为了高效地解决这个问题,我们可以利用堆(Heap)结构。

🏠个人主页:尘觉主页

😀数据流中的中位数

题目链接

牛客网

😄问题描述

假设我们从数据流中不断读取数值,如果从中读取奇数个数值,中位数就是所有数值排序后位于中间的数值;如果读取偶数个数值,中位数就是排序后中间两个数值的平均值。

例如,输入数据流 [5, 2, 3, 4, 1, 6, 7, 0, 8],我们需要依次计算数据流的中位数,得到的结果为:5.00 3.50 3.00 3.50 3.00 3.50 4.00 3.50 4.00

💖示例1

输入:[5,2,3,4,1,6,7,0,8]

返回值:"5.00 3.50 3.00 3.50 3.00 3.50 4.00 3.50 4.00 "

说明:数据流里面不断吐出的是5,2,3…,则得到的平均数分别为5,(5+2)/2,3…

💖示例2

输入:[1,1,1]

返回值:"1.00 1.00 1.00 "

😊解题思路

为了高效地计算数据流的中位数,我们可以使用两个堆:大顶堆和小顶堆。

  • 大顶堆(Max-Heap):用于存储数据流中较小的一半元素,堆顶元素是这部分元素中的最大值。
  • 小顶堆(Min-Heap):用于存储数据流中较大的一半元素,堆顶元素是这部分元素中的最小值。

操作流程:

  1. 每当有新元素插入时,首先根据当前元素个数决定插入哪个堆。
    • 如果总数为偶数,则新元素应插入小顶堆。但为了保证小顶堆的元素都大于大顶堆中的元素,我们可以先将新元素插入大顶堆,再将大顶堆堆顶的最大值弹出并插入小顶堆。
    • 如果总数为奇数,则新元素应插入大顶堆。同样,为了保证大顶堆的元素都小于小顶堆的元素,我们可以先将新元素插入小顶堆,再将小顶堆堆顶的最小值弹出并插入大顶堆。
  2. 插入操作结束后,根据堆中元素的数量计算中位数:
    • 如果总数为偶数,中位数为两个堆顶元素的平均值。
    • 如果总数为奇数,中位数为小顶堆的堆顶元素。

🤔代码实现

以下是用 Java 实现的代码示例

import java.util.PriorityQueue;

public class MedianFinder {
   
   
    /* 
     * 大顶堆,存储数据流中较小的一半元素 
     * 比较器设为倒序,这样堆顶为最大值
     */
    private PriorityQueue<Integer> left = new PriorityQueue
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尘觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值