😀前言
在处理动态数据时,实时计算中位数是一个经典问题。中位数是排序后处于中间位置的数值,数据流中的中位数计算面临两个挑战:首先是数据量的动态变化,其次是需要保持元素的有序性。为了高效地解决这个问题,我们可以利用堆(Heap)结构。
🏠个人主页:尘觉主页
😀数据流中的中位数
题目链接
😄问题描述
假设我们从数据流中不断读取数值,如果从中读取奇数个数值,中位数就是所有数值排序后位于中间的数值;如果读取偶数个数值,中位数就是排序后中间两个数值的平均值。
例如,输入数据流 [5, 2, 3, 4, 1, 6, 7, 0, 8]
,我们需要依次计算数据流的中位数,得到的结果为:5.00 3.50 3.00 3.50 3.00 3.50 4.00 3.50 4.00
。
💖示例1
输入:[5,2,3,4,1,6,7,0,8]
返回值:"5.00 3.50 3.00 3.50 3.00 3.50 4.00 3.50 4.00 "
说明:数据流里面不断吐出的是5,2,3…,则得到的平均数分别为5,(5+2)/2,3…
💖示例2
输入:[1,1,1]
返回值:"1.00 1.00 1.00 "
😊解题思路
为了高效地计算数据流的中位数,我们可以使用两个堆:大顶堆和小顶堆。
- 大顶堆(Max-Heap):用于存储数据流中较小的一半元素,堆顶元素是这部分元素中的最大值。
- 小顶堆(Min-Heap):用于存储数据流中较大的一半元素,堆顶元素是这部分元素中的最小值。
操作流程:
- 每当有新元素插入时,首先根据当前元素个数决定插入哪个堆。
- 如果总数为偶数,则新元素应插入小顶堆。但为了保证小顶堆的元素都大于大顶堆中的元素,我们可以先将新元素插入大顶堆,再将大顶堆堆顶的最大值弹出并插入小顶堆。
- 如果总数为奇数,则新元素应插入大顶堆。同样,为了保证大顶堆的元素都小于小顶堆的元素,我们可以先将新元素插入小顶堆,再将小顶堆堆顶的最小值弹出并插入大顶堆。
- 插入操作结束后,根据堆中元素的数量计算中位数:
- 如果总数为偶数,中位数为两个堆顶元素的平均值。
- 如果总数为奇数,中位数为小顶堆的堆顶元素。
🤔代码实现
以下是用 Java 实现的代码示例
import java.util.PriorityQueue;
public class MedianFinder {
/*
* 大顶堆,存储数据流中较小的一半元素
* 比较器设为倒序,这样堆顶为最大值
*/
private PriorityQueue<Integer> left = new PriorityQueue