Leetcode0798: 得分最高的最小轮调(difficult)

本文介绍如何使用优化方法解决LeetCode题目,通过分析元素与索引的关系,避免暴力遍历,高效计算数组轮调后的得分。展示了两种方法,暴力法与优化后的高效算法,并提供了代码实现和实例解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 题目描述

2. 解题分析

2.1 暴力方法

2.2 优化方法

3. 代码实现


 

1. 题目描述


给定一个数组 A,我们可以将它按一个非负整数 K 进行轮调,这样可以使数组变为 A[K], A[K+1], A{K+2], ... A[A.length - 1], A[0], A[1], ..., A[K-1] 的形式。此后,任何值小于或等于其索引的项都可以记作一分。
例如,如果数组为 [2, 4, 1, 3, 0],我们按 K = 2 进行轮调后,它将变成 [1, 3, 0, 2, 4]。这将记作 3 分,因为 1 > 0 [no points], 3 > 1 [no points], 0 <= 2 [one point], 2 <= 3 [one point], 4 <= 4 [one point]。
在所有可能的轮调中,返回我们所能得到的最高分数对应的轮调索引 K。如果有多个答案,返回满足条件的最小的索引 K。

示例 1:
输入:[2, 3, 1, 4, 0]
输出:3
解释:
下面列出了每个 K 的得分:
K = 0,  A = [2,3,1,4,0],    score 2
K = 1,  A = [3,1,4,0,2],    score 3
K = 2,  A = [1,4,0,2,3],    score 3
K = 3,  A = [4,0,2,3,1],    score 4
K = 4,  A = [0,2,3,1,4],    score 3
所以我们应当选择 K = 3,得分最高。

示例 2:
输入:[1, 3, 0, 2, 4]
输出:0
解释:
A 无论怎么变化总是有 3 分。
所以我们将选择最小的 K,即 0。

提示:
A 的长度最大为 20000。
A[i] 的取值范围是 [0, A.length)。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/smallest-rotation-with-highest-score
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题分析

2.1 暴力方法

        从题意来看,所谓的轮调就是循环左移。

        对K进行从0到N-1的扫描,对每个K值导致的轮调结果进行元素值与序号值的比较统计。

        这样的话,对K的扫描是O(n),每个轮调结果的统计也是O(n),总的时间复杂度是gif.latex?O%28n%5E2%29

        代码参见bestRotation1(). 

2.2 优化方法

        对于数组 nums 中的某元素x,当x 所在下标大于或等于x 时,元素记1 分。因此元素 x 记 1 分的下标范围是 [x, n - 1]。假设元素 x 的初始下标为 i,则当轮调索引为k 时,元素 x在轮调后的新的位置索引是gif.latex?%28i-k%29%25n%20%5Cgeq%20x,证明如下:

        由此可以根据gif.latex?%28i-k%29%25n%20%5Cgeq%20x是否成立来根据判断元素x在k轮调后是否有计分。 

        进一步,为了方便实现,根据i与x的相对大小进行分类讨论后可以去掉求模运算,如下所示:        

  • 当 i < x 时,gif.latex?%28i-k%29%25n%20%5Cgeq%20x%20%5CLeftrightarrow%20%28i&plus;1%29%20%5Cleq%20k%20%5Cleq%20%28i-x&plus;n%29
  • 当 i >= x 时,gif.latex?%28i-k%29%25n%20%5Cgeq%20x%20%5CLeftrightarrow%20k%20%5Cleq%20%28i-x%29%20%5C%20or%20%5C%20k%20%5Cgeq%20%28i&plus;1%29

        这两种情况的示例如下:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

 

        基于此,可以得到实现算法如下:

        用一个数组points存储各轮调结果,points[k]对应于轮调索引为k的计分值。

        扫描数组中每个元素x,对于落在会使得元素x经过轮调后有计分的范围内的k,将points[k]加一。这样扫描完毕后,points中就存储了所有轮调情况的计分值。最后求最大值即可。如果出现多个等值的时候,取第一个最大值即可(因为题意要求取论调值最小的)。        

        代码参见bestRotation().

3. 代码实现

import time
from typing import List	
import numpy as np
class Solution:
    def bestRotation1(self, nums: List[int]) -> int:
        N = len(nums)
        margin = np.zeros((N,)) # idx - value
        r_max = 0
        point_max = -float('inf')
        for r in range(N):
            for i in range(N):
                margin[i] = ((i-r)%N) - nums[i]
            # print(margin >= 0)
            point  = sum((margin >= 0).astype('int'))
            if point_max < point:
                point_max = point
                r_max = r
        return r_max               

    def bestRotation(self, nums: List[int]) -> int:
        N = len(nums)

        points = np.zeros((N,))

        for i in range(N):
            x = nums[i]
            if i < x:
                points[i+1:i-x+N+1] += 1
            else:
                points[0:i-x+1] += 1
                points[(i+1):] += 1
            # print(i, points)

        k_max = 0
        point_max = points[0]
        
        for k in range(1,N):
            if point_max < points[k]:
                point_max = points[k]
                k_max = k
        return k_max                               
        
if __name__ == '__main__':            
    sln = Solution()
    
    nums = [2, 3, 1, 4, 0]
    print('ans = {0}'.format(sln.bestRotation1(nums)))            
    print('ans = {0}'.format(sln.bestRotation(nums)))            
        
    nums = [1, 3, 0, 2, 4]
    print('ans = {0}'.format(sln.bestRotation1(nums)))            
    print('ans = {0}'.format(sln.bestRotation(nums)))            
    
    N = 2000
    nums = list(np.random.randint(0,N,N))

    tStart = time.time()     
    ans = sln.bestRotation1(nums)
    tElapsed = time.time() - tStart        
    print('ans = {0}, tElapsed = {1} (sec)'.format(ans,tElapsed))            
    
    tStart = time.time()     
    ans = sln.bestRotation(nums)
    tElapsed = time.time() - tStart        
    print('ans = {0}, tElapsed = {1} (sec)'.format(ans,tElapsed))       

        以上bestRotation()还利用了numpy的运算勉强通过了leetcode的要求。但是排名非常惨淡:

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA56yo54mb5oWi6ICV,size_20,color_FFFFFF,t_70,g_se,x_16

        还需要继续努力。。。^-^.

 

本系列总目录:笨牛慢耕的Leetcode解题笔记(动态更新。。。)https://chenxiaoyuan.blog.csdn.net/article/details/123040889 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值