常用物理思想和研究方法

高中物理涉及的常用物理思想方法及其对应的理论和实验研究案例如下:


1. 理想模型法/建模法

思想:忽略次要因素,抓住研究对象的主要或者本质因素,建立简化的物理模型来帮助理解复杂的物理现象、研究本质规律。

  • 理论例
    – 质点模型(忽略物体的大小和形状,将其视为一个只有质量没有体积的点)、
    – 点电荷(库仑定律)、
    – 理想气体(假设气体分子间无相互作用,用于研究气体状态方程)。
  • 实验例:自由落体实验(忽略空气阻力)、伽利略斜面实验(外推理想情况)。

进一步,物理模型可以分为以下几类:

  • (1) 实物模型:如质点、点电荷、点光源、轻绳、轻杆、弹簧振子……
  • (2)过程模型:如匀速运动、匀变速直线运动、简谐运动、弹性碰撞、匀速圆周运动……
  • (3)情境模型:如人船模型、子弹打木块、平抛运动、临界问题……
  • (4)状态模型:???

求解物理问题,很重要的一点就是把所研究的问题映射到熟悉的已知物理模型上来,利用已有的知识和结论来研究新问题。


2. 等效替代法

思想:用效果相同但相对简单(比如说容易测量等)的东西代替来研究(相对复杂或者抽象的)物理规律的方法。它可以简化实验,提高实验的效率。 例如,在研究合力与分力之间的关系时,可以用一个弹簧秤的拉力来替代两个弹簧秤的拉力,只要保证拉力的效果相同即可。

  • 理论例:合力与分力(力的合成与分解)、等效电阻(串并联电路)。
  • 实验例:验证力的平行四边形定则、伏安法测电阻(等效电路分析)。

3. 控制变量法

思想:物理实验中常用的一种方法。自然界中的各种现象都是错综复杂的,通常来说决定一个现象的产生和变化的因素非常多,同时研究所有变化因素的影响效果非常难、一般来说都不可能。通过控制影响物理量变化的因素,保持其他变量(变化因素)不变,来研究某一变量(变化因素)与物理量之间的关系,这种研究问题的方法就是控制变量法。例如,在研究摩擦力与压力之间的关系时,可以控制接触面的粗糙程度等因素不变,只改变压力来观察摩擦力的变化。

  • 理论例:牛顿第二定律((F=ma))、欧姆定律((I=U/R))。
  • 实验例:探究加速度与力/质量的关系(控制力不变,探究加速度与质量的关系;控制质量不变探究加速度与力的关系)、研究电阻与材料/长度/横截面积的关系。

参见:DIS研究加速度与力的关系的实验


4. 微元法(微分思想)

思想:将复杂过程分解为多个微小的“元过程”,逐一分析后再进行整体计算(比如说求积分等)求解整体规律。

  • 理论例
    – 匀变速直线运动位移公式推导( s = v 0 t + 1 2 a t 2 s=v_0t+\frac{1}{2}at^2 s=v0t+21at2)。将运动过程分解为无数小段,每段近似匀速,求和后得到总位移。
    – 电流的微观表达式( I = n e S v I=neSv I=neSv)推导。
    – 变力做功计算:将力分解为无数小段,计算每段做功,再求和。
  • 实验例:利用打点计时器研究连续变速运动。

5. 极限思维法

思想:通过极端条件(将某个物理量推向极端(极大或极小)),基于此推导一般性的物理规律。

  • 理论例:瞬时速度(时间趋近于零的平均速度)。
  • 实验例:光电效应中极限频率的验证;伽利略理想斜面实验(斜面倾角无限趋近90°时等价于自由落体)

6. 类比法

思想:类比法是指由一类事物所具有的特点,可以推出与其类似事物也具有这种特点的思考和处理问题的方法。

  • 理论例:库仑力与万有引力类比、电场与重力场类比(电势能与重力势能)。
  • 实验例:电场线模拟实验(类比磁感线)。

7. 对称性思想

思想:利用对称性简化问题或发现规律。

  • 理论例:简谐运动的对称性(位移、速度、加速度)、电磁学中的左右手定则。
  • 实验例:杨氏双缝干涉(光路对称性)、验证动量守恒的对称碰撞实验。

8. 守恒思想

思想:利用守恒量(能量、动量等)解决复杂问题。

  • 理论例:机械能守恒定律、动量守恒定律、电荷守恒定律。
  • 实验例:碰撞实验验证动量守恒、单摆实验验证机械能守恒。

9. 实验与理论结合法

思想:通过实验验证理论或修正理论模型。

  • 理论例:伽利略对自由落体的研究(理论推导与实验结合)、爱因斯坦光电效应方程。
  • 实验例:卡文迪许扭秤测引力常量、密立根油滴实验测元电荷。

10. 图像分析法

思想:通过绘制物理量之间的图像直观描述物理量关系,并据此研究和分析物理问题的方法。图像可以直观地展示物理量之间的关系和变化趋势,有助于发现和解决物理问题。例如,在研究加速度与质量的关系时,可以绘制 a − 1 m a - \frac{1}{m} am1图像来直观地展示加速度与质量成反比的关系。

  • 理论例:基于 v − t v-t vt图像分析位移与加速度、基于 U − I U-I UI曲线分析电源特性。
  • 实验例:测绘小灯泡的伏安特性曲线、弹簧振子的振动图像。

11. 归纳与演绎法

思想:从实验数据归纳规律(归纳),再用规律演绎新结论(演绎)。

  • 理论例:开普勒三定律(归纳)→ 牛顿万有引力定律(演绎)。
  • 实验例:探究胡克定律(归纳弹簧弹力与形变量关系)。

12. 理想实验法

思想:在头脑中进行的实验,它不受客观条件的限制,可以研究那些在现实条件下无法实现或难以实现的实验。例如,在研究自由落体运动时,可以通过理想化的模型来忽略空气阻力等因素,从而更深入地理解自由落体运动的规律。

例1. 伽利略的双斜面实验
伽利略在研究力与运动的关系时,运用的双斜面实验是一种理想实验法。这种方法是在物理实验的基础上,加上合理的科学的推理得出结论。在伽利略的双斜面实验中,他让小球从一个斜面滚下,再滚上另一个斜面,并观察小球的运动情况。通过多次实验和观察,伽利略发现,如果斜面足够光滑且没有摩擦力,小球将能够滚上另一个斜面并达到与原来相同的高度。进一步地,他推理出,如果第二个斜面逐渐放平,小球将沿着水平面一直运动下去,而不会停下来。

这一推理过程体现了理想实验法的特点,即在实验的基础上进行合理的科学推理。伽利略通过这一实验和推理,得出了力不是维持物体运动的原因,而是改变物体运动状态的原因这一重要结论。这一结论对于后来的物理学发展产生了深远的影响,被认为是现代物理学的基石之一。

因此,伽利略在研究力与运动的关系的双斜面实验中采用的研究方法属于理想实验法。

例2. 爱因斯坦的思维实验。

总结

这些思想方法贯穿高中物理的学习,帮助学生理解物理本质,培养科学思维。例如:通过理想化模型简化问题,用守恒思想解决复杂动力学问题,结合实验与理论验证规律等。掌握这些方法,对解决物理问题和后续学习至关重要。

ref1: 链接: 14个常用物理思想方法的归纳与分析

一、综合实战—使用极轴追踪方式绘制信号灯 实战目标:利用对象捕捉追踪极轴追踪功能创建信号灯图形 技术要点:结合两种追踪方式实现精确绘图,适用于工程制图中需要精确定位的场景 1. 切换至AutoCAD 操作步骤: 启动AutoCAD 2016软件 打开随书光盘中的素材文件 确认工作空间为"草图与注释"模式 2. 绘图设置 1)草图设置对话框 打开方式:通过"工具→绘图设置"菜单命令 功能定位:该对话框包含捕捉、追踪等核心绘图辅助功能设置 2)对象捕捉设置 关键配置: 启用对象捕捉(F3快捷键) 启用对象捕捉追踪(F11快捷键) 勾选端点、中心、圆心、象限点等常用捕捉模式 追踪原理:命令执行时悬停光标可显示追踪矢量,再次悬停可停止追踪 3)极轴追踪设置 参数设置: 启用极轴追踪功能 设置角度增量为45度 确认后退出对话框 3. 绘制信号灯 1)绘制圆形 执行命令:"绘图→圆→圆心、半径"命令 绘制过程: 使用对象捕捉追踪定位矩形中心作为圆心 输入半径值30并按Enter确认 通过象限点捕捉确保圆形位置准确 2)绘制直线 操作要点: 选择"绘图→直线"命令 捕捉矩形上边中点作为起点 捕捉圆的上象限点作为终点 按Enter结束当前直线命令 重复技巧: 按Enter可重复最近使用的直线命令 通过圆心捕捉极轴追踪绘制放射状直线 最终形成完整的信号灯指示图案 3)完成绘制 验证要点: 检查所有直线是否准确连接圆心象限点 确认极轴追踪的45度增量是否体现 保存绘图文件(快捷键Ctrl+S)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值