零、概要
本文是关于高中几何光学核心知识要点总结,由deepseek总结+人肉修订补充而成,并参照赵凯华《新概念物理读本3》第五章几何光学进行校正而成。以下用 u u u和 v v v分别表示物距和相距,分别对应于赵书中的 s s s和 s ′ s' s′。
一、光的直线传播与基本概念
-
光的直线传播:
- 光在同种均匀介质中沿直线传播(如:影子的形成、日食/月食)。
- 光线:用带箭头的直线表示光的传播路径。
-
光速:
- 真空中光速 c = 3 × 1 0 8 m/s c = 3 \times 10^8 \, \text{m/s} c=3×108m/s;其他介质中光速 v < c v < c v<c。
二、光的反射
-
反射定律(平面镜):
- 入射光线、反射光线、法线在同一平面内;
- 入射角等于反射角( θ 入 = θ 反 \theta_{\text{入}} = \theta_{\text{反}} θ入=θ反)。
-
平面镜成像特点:
- 虚像(实际光线未汇聚);
- 像与物大小相等;
- 像距等于物距( u = v u = v u=v,暂不考虑符号);
- 像与物关于镜面对称。
-
球面镜(凹面镜/凸面镜):
- 凹面镜:会聚光线,可成实像或虚像(如:手电筒反光碗);
- 凸面镜:发散光线,成正立缩小的虚像(如:汽车后视镜)。tips:如果担心记混了或者忘记了,想像一下汽车后视镜的用途,如果倒立或者放大的像的话,那司机根本就没法看。如果是实像即成像于实物一侧这样就会出现在司机右后方,司机同样无法看到。所以只有正立, 缩小, 虚像这一种可能。
三、光的折射
-
折射定律(斯涅尔定律):
- 入射光线、折射光线、法线在同一平面内;
- 折射率公式: n 1 sin θ 1 = n 2 sin θ 2 n_1 {\sin \theta_1} = n_2 {\sin \theta_2} n1sinθ1=n2sinθ2( θ 1 \theta_1 θ1为入射角, θ 2 \theta_2 θ2为折射角; n 1 n_1 n1, n 2 n_2 n2分别为入射侧和折射侧的介质绝对折射率)。
-
折射率:
- 绝对折射率: n = c v n = \frac{c}{v} n=vc(介质中光速越慢,折射率越大);
- 相对折射率: n 21 = n 2 n 1 n_{21} = \frac{n_2}{n_1} n21=n1n2。
-
全反射:
- 条件:
- 光从光密介质( n 1 n_1 n1大)射向光疏介质( n 2 n_2 n2小);
- 入射角 ≥ 临界角 C C C( sin C = n 2 n 1 \sin C = \frac{n_2}{n_1} sinC=n1n2)。
- tips:全反射的临界角对应于此时折射角变为 9 0 o 90^o 90o了。只有从光密介质射向光疏介质,折射角会大于入射角,才会出现折射角先到达 9 0 o 90^o 90o的情况。而且,折射角越大,折射光线的能量就越小。折射角变为 9 0 o 90^o 90o意味着折射光线能量变为0了,也就是没有折射,全部反射了。
- 应用:光纤通信、全反射棱镜。
- 条件:
四、透镜成像
-
凸透镜(会聚透镜):
- 成像规律(通过光心、平行光线、焦点光线作图):
- 物距 u u u 变化时,像的性质不同(见下表)。
- 公式:
1 f = 1 u + 1 v \frac{1}{f} = \frac{1}{u} + \frac{1}{v} f1=u1+v1
( f f f: 焦距; u u u: 物距; v v v: 像距) - 符号规则:
- 物距 u u u 取正值;
- 像距 v v v:实像为正,虚像为负;
- 凸透镜焦距 f f f 为正。
- 成像规律(通过光心、平行光线、焦点光线作图):
-
凹透镜(发散透镜):
- 总是成缩小的、正立的虚像;
- 公式与凸透镜相同,但焦距 f f f 为负。
-
成像情况总结表:
物距 u u u 凸透镜成像特点 凹透镜成像特点 u > 2 f u > 2f u>2f 缩小、倒立、实像( f < v < 2 f f < v < 2f f<v<2f) 缩小、正立、虚像 u = 2 f u = 2f u=2f 等大、倒立、实像( v = 2 f v = 2f v=2f) 同上 f < u < 2 f f < u < 2f f<u<2f 放大、倒立、实像( v > 2 f v > 2f v>2f) 同上 u = f u = f u=f 不成像(平行光出射) 同上 u < f u < f u<f 放大、正立、虚像(同侧) 同上
注1:以上描述和结论是基于透镜放在光疏介质中,即外部介质折射率小于透镜材料折射率。这是最常见的情况。如果透镜是放在光密介质中的话,情况是不一样的。在光密介质中,凸透镜变成了发散透镜,而凹透镜则变成了会聚透镜。
注2:以上表格只考虑了实物的情况,可以基于高斯公式推导而得。虚物的情况也可以基于高斯公式推导而得,参见下一节。
注3:以上第一列是针对凸透镜(
f
>
0
f>0
f>0)而言。置于光疏介质中凹透镜只可能形成缩小、正立、虚像,与物距无关。
- 基于高斯公式的成像情况推导:
考虑置于光疏介质的凹透镜,其焦距为负(
f
<
0
f<0
f<0)。
由高斯公式:
1
u
+
1
v
=
1
f
=
−
1
∣
f
∣
\frac{1}{u} + \frac{1}{v} = \frac{1}{f} = -\frac{1}{|f|}
u1+v1=f1=−∣f∣1
可得:
v
=
−
u
∣
f
∣
u
+
∣
f
∣
<
0
v = -\frac{u|f|}{u+|f|} < 0
v=−u+∣f∣u∣f∣<0
考虑实物的话有
u
>
0
u>0
u>0,所以显然有,
−
1
<
M
=
−
v
u
=
−
∣
f
∣
u
+
∣
f
∣
<
0
-1 < M = -\frac{v}{u} = -\frac{|f|}{u+|f|} < 0
−1<M=−uv=−u+∣f∣∣f∣<0
1
>
M
>
0
1>M>0
1>M>0表示是正立缩小的像,
v
<
0
v<0
v<0表示是虚像。
总之,置于光疏介质的凹透镜对于实物只能成缩小、正立、虚像,与物距无关。
针对置于光疏介质的凸透镜,上节所总结的关于实物各种成像情况可以以同样方式基于高斯公式推导而得。
关于虚物的情况,以及置于光密介质的透镜的成像情况也可以依葫芦画瓢推导而得。此处不再赘述。
五、像的横向放大率
- 横向放大率公式:(横向是相对于主光轴而言,沿主光轴为纵向,垂直于主光轴则为横向)
m = − 像高 物高 = − v u m = - \frac{\text{像高}}{\text{物高}} = -\frac{v}{u} m=−物高像高=−uv- ∣ m ∣ > 1 \left|m\right| > 1 ∣m∣>1: 放大的像; ∣ m ∣ < 1 \left|m\right| < 1 ∣m∣<1: 缩小的像。
- m < 0 m < 0 m<0表示倒立的像, m > 0 m > 0 m>0表示正立的像(但是要基于统一自洽的关于物距、像距、焦距等的符号规则。参见《球面镜反射、折射和透镜成像的总结对比》: link)。
六、常见光学仪器
-
眼睛:
- 晶状体相当于凸透镜,通过调节焦距使像落在视网膜上;
- 近视眼(凹透镜矫正)、远视眼(凸透镜矫正)。
-
显微镜:
- 物镜(短焦距)成放大的实像,目镜(短焦距)进一步放大虚像。
-
望远镜:
- 物镜(长焦距)成缩小的实像,目镜(短焦距)放大虚像。
七、要点提醒
-
虚像与实像:
- 实像由实际光线汇聚形成,可呈现在光屏上(如凸透镜成像);
- 虚像由光线反向延长线形成,无法呈现在光屏上(如平面镜成像)。
-
符号规则:
- 凹透镜的焦距为负,计算时注意代入符号。
-
光路图(特殊光线作图):
- 画透镜成像光路图时,至少用两条特殊光线
- 特殊光线
– 平行入射光线(平行于主光轴)
– 对于透镜而言过光心,对于球面反射或球面折射而言过顶点
– 过焦点
-
组合光学问题:
- 分步分析(如先平面镜反射,再透镜折射)。例:其实透镜成像就是分解为两次折射成像来分析的。
- 虚物:正是在组合光学问题中,才会出现虚物的。
学习建议:多练习光路图绘制和公式推导,结合实验(如凸透镜成像规律)加深理解!