高阶控制需要用到mpc
传统控制只能处理二阶系统
多输入-多输出
成本函数+精确模型 = 输入系统
二阶系统不需要使用MPC
高阶系统或者非线性=使用MPC
- sanple time 采样时间
- 预测的步数–20到30哥周期(涵盖上升时间)Np
- 控制量的预测范围Nc
- 约束条件
- 权重
多给几个步数,优化的效果更好,cost更低
但是太多会导致计算时间太长
控制步数 是 预测部署的百分之10
模型建立
定义一个新的状态向量,把yk放进来
把输出放到状态变量,形成一个性的状态模型
Nc≤Np
根据当前状态,去预测接下来Np步的状态(根据1.7)
输出y=cx(k),也可以预测接下来Np的输出,根据状态方程推出来
预测n步
由状态空间模型整理出1.12
detaU:所有控制量
1.12只要有当前时刻状态量;可以预估往后Np步输出Y
成本函数:
第一项(输入命令-输出)误差的平方,第二项控制量相关
R越大,控制量增加的幅度越小(惩罚因子)
1.12带到1.13得到1.14
要控制cost function最小化,就必须保证极值为0,也就是(成本函数对detaU控制量)作一阶导数为0这个时刻
得到detaU
Rs就是命令