回溯算法之布罗夫卫队(最大团问题)

本文介绍了如何运用回溯算法解决部落卫队问题,该问题等价于寻找无向图的最大团。通过分析问题,设定约束条件和限界条件,实现了从图中找出最大的没有相互敌对关系的节点子集。文章包括问题阐述、算法分析、代码实现和运行结果总结。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、问题

在原始部落中,由于食物缺乏,部落居民经常因为争夺猎物发生冲突,几乎每个居民都 有自己的仇敌。部落酋长为了组织一支保卫部落的卫队,希望从居民中选出最多的居民加入 卫队,并保证卫队中任何两个人都不是仇敌。假设已给定部落中居民间的仇敌关系图,编程
计算构建部落护卫队的最佳方案。

 


2、分析

以部落中的 5 个居民为例,我们把每个居民编号作为一个结点,凡是关系友好的两个居

民,就用线连起来,是仇敌的不连线,如图 5-19 所示。国王护卫队问题就转化为从图中找出最多的结点,这些结点相互均有连线(任何两个人都不是仇敌)。

国王护卫队问题属于典型的最大团问题。什么是最大团呢?首先来看什么是团。

完全子图:给定无向图 G=(V,E),其中 V 是结点集,E是边集。G'=(V',E')如果结点集 V'V,E'E,且 G'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码莎拉蒂 .

你的鼓励是我最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值