旅行商问题,车辆路径问题的数学规划模型

根据书籍 Snyder, Lawrence V., and Zuo-Jun Max Shen. Fundamentals of supply chain theory. John Wiley & Sons, 2019 中的相关章节整理。

1. 旅行商问题

旅行商问题(Travelling Salesman Problem): 找到一条将所有地点走完,除了起点外,每个地点只经过一次,再回到起点的最短路线。

下图是一个美国几十个城市的 TSP 路线。
在这里插入图片描述

参数

  • N = { 1 , 2 , … , n } N=\{1,2,\dots,n\}\quad N={1,2,,n} 地点的集合
  • c i j c_{ij}\quad cij 从地点 i i i 到地点 j j j 的距离
  • x i j x_{ij}\quad xij 0-1决策变量,表示路线是否经过从地点 i i i 到地点 j j j

由于从 i 到 j 到距离与从 j 到 i 的距离一般是一样的( c i j = c j i c_{ij}=c_{ji} cij=cji,对称的),因此 x i j = x j i x_{ij}=x_{ji} xij=xji.

数学模型

构建数学规划模型如下:

min ⁡ ∑ i ∈ N ∑ j ∈ N c i j x i j s.t. ∑ i ∈ N x i h + ∑ j ∈ N x h j = 2 ∀ h ∈ N ∑ i , j ∈ S x i j ≤ ∣ S ∣ − 1 ∀ S ⊂ N , 2 ≤ ∣ S ∣ ≤ n − 1 x i j ∈ { 0 , 1 } ∀ i , ∀ j \begin{align*} \min \quad &\sum_{i\in N}\sum_{j\in N} c_{ij}x_{ij}\\ \text{s.t.} \quad & \sum_{i\in N}x_{ih}+\sum_{j\in N}x_{hj}=2\qquad \forall h \in N\\ & \\ &\sum_{i,j\in S}x_{ij}\leq |S|-1\qquad \forall S\subset N, 2\leq |S|\leq n-1\tag{1} \\ &x_{ij}\in\{0,1\}\quad\forall i,\forall j \end{align*} mins.t.iNjNcijxijiNxih+jNxhj=2hNi,jSxijS1SN,2Sn1xij{0,1}i,j(1)

第一个约束条件表示任何一个地点都通过(到达这个地点,从这个地点出发),第二个约束条件为消除子环条件(sub-tour elimination constraint) ,其中 S S S N N N 的子集, ∣ S ∣ |S| S 表示 S S S 中的元素个数。

消除子环条件也可表示为:

∑ i ∈ S , j ∈ S ‾  or  i ∈ S ‾ , j ∈ S x i j ≤ ∣ S ∣ − 1 ∀ S ⊂ N , 2 ≤ ∣ S ∣ ≤ n − 1 \sum_{i\in S, j\in\overline{S}\text{ or }i\in\overline{S},j\in S}x_{ij}\leq |S|-1\qquad \forall S\subset N, 2\leq |S|\leq n-1 iS,jS or iS,jSxijS1SN,2Sn1

子环表示所有地点中的某几个地点的路线形成了一个闭环。例如,下图中,本来有 7 个地点,但是却存在两个子环:

在这里插入图片描述

2. 车辆路径问题

车辆路径问题(VRP)与 TSP 问题的区别是,路线中不仅有一辆车,有好几辆车。所有车辆的路线将所有地点走完,例如下图:

在这里插入图片描述

参数

因为 VRP 中不仅一辆车,涉及到分配车辆的问题,所以决策变量也多了些:

  • N = { 0 , 1 , 2 , … , n } N=\{0,1,2,\dots,n\}\quad N={0,1,2,,n} 地点的集合, 0 表示起点
  • N − = { 1 , 2 , … , n } N^-=\{1,2,\dots,n\}\quad N={1,2,,n} 地点的集合, 0 表示起点
  • K K\quad K 一共 K K K 辆车
  • C C\quad C 每个车辆的容量为 C C C
  • d i d_i\quad di 地点 i i i 的需求量
     
  • c i j c_{ij}\quad cij 从地点 i i i 到地点 j j j 的距离
  • x i j k x_{ijk}\quad xijk 0-1决策变量,表示分配车辆 k k k 从地点 i i i 到地点 j j j
  • y i k y_{ik}\quad yik 0-1决策变量,表示车辆 k k k 是否通过地点 i i i

数学模型

构建数学规划模型如下:

min ⁡ ∑ k = 1 K ∑ i ∈ N ∑ j ∈ N c i j x i j k s.t. ∑ k = 1 K y i k = 1 ∀ i ∈ N −   ∑ k = 1 K y 0 k = 1 ∑ i ∈ N x i h k = ∑ j ∈ N x h j k = y h k ∀ h ∈ N , ∀ k ∑ i ∈ N d i y i k ≤ C ∑ i , j ∈ S x i j k ≤ ∣ S ∣ − 1 ∀ k , ∀ S ⊆ N − , ∣ S ∣ ≥ 2 x i j k ∈ { 0 , 1 } ∀ i , ∀ j , ∀ k y i k ∈ { 0 , 1 } ∀ i , ∀ k \begin{align*} \min \quad &\sum_{k=1}^{K}\sum_{i\in N}\sum_{j\in N} c_{ij}x_{ijk}\\ \text{s.t.} \quad & \sum_{k=1}^Ky_{ik}=1\qquad \forall i \in N^-\ \\ & \sum_{k=1}^Ky_{0k}=1\\ &\sum_{i\in N} x_{ihk}=\sum_{j\in N} x_{hjk}=y_{hk}\quad \forall h\in N,\forall k\\ &\sum_{i\in N} d_iy_{ik}\leq C\\ & \\ &\sum_{i,j\in S}x_{ijk}\leq |S|-1\qquad \forall k, \forall S\subseteq N^-, |S|\geq 2 \\ &x_{ijk}\in\{0,1\}\quad\forall i,\forall j,\forall k\\ &y_{ik}\in\{0,1\}\quad\forall i,\forall k \end{align*} mins.t.k=1KiNjNcijxijkk=1Kyik=1iN k=1Ky0k=1iNxihk=jNxhjk=yhkhN,kiNdiyikCi,jSxijkS1k,SN,S2xijk{0,1}i,j,kyik{0,1}i,k

第一个约束条件表示除了起点,每个地点只分配给一辆车;第二个约束条件表示起点出发 K 辆车;
第三个约束条件表示 x x x y y y 的关系;第四个约束条件表示车辆的容量约束;第五个约束条件是子环消除约束。

第三个约束条件也可以写成:

∑ i ∈ N x i h k + ∑ j ∈ N x h j k = 2 y h k \sum_{i\in N} x_{ihk}+\sum_{j\in N} x_{hjk}=2y_{hk} iNxihk+jNxhjk=2yhk

旅游线路设计和比对     现在,旅游越来越成为消费时尚,旅游者外出旅游大多是为了游览名山大川、名胜古迹,轻松、娱乐、增长见识是他们的主要需求。作为旅游行业,开发出更好的旅游产品是很重要的,而设计好旅游线路是其中的一个重要环节。设计者应根据不同的游客需求设计出各具特色的线路。比如不少人洽谈生意之余也需要到处旅行,他们的旅行多是出于务方面的动机,务旅游的特点是消费较高,喜欢入住高级酒店,为业务交往需要经常在餐厅宴请宾客,而且来去匆匆;而针对退休老年人的旅游线路就应该轻松、休闲、节奏稍慢,费用适中等等。旅游市场发展日新月异,游客的需求与品位也在不断地变化和提高。为了满足游客的需要,旅行社应及时把握旅游市场动态,注重新产品、新线路的开发,并根据市场情况及时推出新的有特色的旅游线路。一条具有特色的旅游线路,有时能为旅行社带来惊人的经济收入与社会效益。 旅游线路通常意义上指在旅游地或者旅游区内旅游者参观游览所经过的路线。旅游线路是一个区域内若干景点在不同的空间布置,对这些景点游览或活动的先后顺序与连接可有多种不同的串联方式,由此组合成不同的旅游线路。它是依赖于景区(点)分布的线型产品,这种产品的简单结构是通过道路对景点之间的有限连接,一般以交通线路设计为主要表现手法。 现在某旅行社为了进一步开发旅游市场,比如以海南省旅游为例,想对旅游线路进行重新整合,合理设计。一般考虑旅游线路,从经营方或者供给方出发,会涉及下面的五个方面:一是空间距离;二是运动路线;三是组织形式;四是旅游目的;五是各类旅游线路之间的关系。主要设计原则有:一是资源导向原则,如注意旅游地的主题特色;二是以游客旅游需求和目的为主的原则;三是市场细分区位原则;四是供给全面原则;五是时效优先效益兼顾原则,如注意冷热景点搭配、注意向新开发景点引导;六是安全第一原则。设计出来的旅游线路必须重视作为旅游活动主体的心理和生理需求,给旅游活动带来方便,提高旅游者的满意度和出游积极性,进而促进旅游地的可持续发展。 旅游线路的设计关键是适应市场需求,具体而言,它必须大限度地满足旅游者的需求,如成本小,日程方便等等。对于旅行社来讲,又要尽可能在满足旅游者需要的前提下降低运营成本,提高效益。在设计时充分考虑景点资源、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值