包含资金约束的多阶段报童模型

多阶段报童模型与最优订货策略

最近看赵修利于龚希亭的两篇论文,都是用多阶段报童模型建模,只考虑lost sales的情况,通过证明最优订货策略是 base stock策略,进而得出一系列性质。

 

文章中大部分是证明,不过读了受益匪浅,我计划将数学证明自己推一遍。

 

状态变量:

初始库存水平      

初始资金             

补货上限            

 

其他参数:

         

 

状态转移方程:

 

定义最优指标函数: 

 

 

边界函数:

 

若要证明最优策略,必须证明资金的最优指标函数是关于   的联合凹函数。

 

证明:归纳法

 

首先边界函数是关于  的联合凹函数。

假设  是联合凹函数,需证明 也是联合凹函数。

 

首先证明

是关于 x, s, w 的联合凹函数。

即:

 

需利用两个重要性质:

 

并且,可以证明   是关于z 的减函数,

又由于Vn 是凹函数,可行域为凹, 则期望函数为凹函数。

用 R 表示 w+cx, 则最优函数也是关于 s 与 R 的凹函数。最优函数为:

 

当 R 不变时及无约束时,设最优解为

则最优函数在 y 小于 此值时递增,大于此值时,抵减。 可以推出 base stock 的订货策略。

 

在接下来的定理中,我一直以为论文的证明过程有误,直到过了三年多,才真正清楚。原来,

V(x,S)=\tilde{V}(x,R)=V(x,R-cx)

 

这两个 V 函数是不一样的,而之后定义的 \pi 函数是基于第二个 V 函数的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值