CUDA 加速的基础线性代数库cuBLAS

cuBLAS 是 NVIDIA 提供的 GPU 加速版 BLAS (Basic Linear Algebra Subprograms) 实现,专门针对 NVIDIA GPU 进行了高度优化。

cuBLAS 核心特性

  1. 完整 BLAS 功能支持

    • Level 1:向量-向量运算 (如点积、axpy)

    • Level 2:矩阵-向量运算 (如矩阵向量乘法)

    • Level 3:矩阵-矩阵运算 (如矩阵乘法 GEMM)

  2. 数据类型支持

    • 单精度 (S)、双精度 (D)

    • 复数 (C/Z)

    • 半精度 (H) 和混合精度计算

    • Tensor Core 加速 (支持 FP16/FP32 混合精度)

  3. 高性能特性

    • 异步执行

    • 流并行

    • 批处理操作

cuBLAS API 结构

cuBLAS 提供两种 API 风格:

  1. 传统 API (legacy API)

    • 较老的函数命名风格 (如 cublasSgemm)

    • 需要显式管理设备指针

  2. 新版 API (自 CUDA 6.0)

    • 更现代的接口设计

    • 支持指针模式自动管理

    • 更完善的错误处理

基本使用模式

1. 初始化和资源管理

cpp

#include <cublas_v2.h>

cublasHandle_t handle;
cublasCreate(&handle); // 创建句柄

// 设置数学模式 (如允许Tensor Core使用)
cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH);

// ...执行运算...

cublasDestroy(handle); // 销毁句柄

2. 矩阵乘法示例 (SGEMM)

cpp

// 矩阵尺寸
int m = 1024, n = 1024, k = 1024;

// 主机内存分配和初始化
float *h_A = (float*)malloc(m*k*sizeof(float));
float *h_B = (float*)malloc(k*n*sizeof(float));
float *h_C = (float*)malloc(m*n*sizeof(float));

// 设备内存分配
float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, m*k*sizeof(float));
cudaMalloc(&d_B, k*n*sizeof(float));
cudaMalloc(&d_C, m*n*sizeof(float));

// 数据传输到设备
cublasSetVector(m*k, sizeof(float), h_A, 1, d_A, 1);
cublasSetVector(k*n, sizeof(float), h_B, 1, d_B, 1);

// 执行矩阵乘法 (C = α*A*B + β*C)
const float alpha = 1.0f, beta = 0.0f;
cublasSgemm(handle, 
           CUBLAS_OP_N, CUBLAS_OP_N, 
           m, n, k, 
           &alpha, 
           d_A, m, 
           d_B, k, 
           &beta, 
           d_C, m);

// 结果取回主机
cublasGetVector(m*n, sizeof(float), d_C, 1, h_C, 1);

// 释放资源
cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
free(h_A); free(h_B); free(h_C);

关键函数分类

Level 1 函数 (向量运算)

  • cublas<>axpy:向量加权加法 (y = αx + y)

  • cublas<>dot:向量点积

  • cublas<>scal:向量缩放 (x = αx)

  • cublas<>nrm2:向量范数计算

Level 2 函数 (矩阵-向量运算)

  • cublas<>gemv:通用矩阵-向量乘法

  • cublas<>symv:对称矩阵-向量乘法

  • cublas<>trmv:三角矩阵-向量乘法

Level 3 函数 (矩阵-矩阵运算)

  • cublas<>gemm:通用矩阵乘法 (核心函数)

  • cublas<>symm:对称矩阵乘法

  • cublas<>trmm:三角矩阵乘法

  • cublas<>syrk:对称秩k更新

高级特性

1. 批处理 GEMM

cpp

// 批处理矩阵乘法 (多个小矩阵同时计算)
cublasSgemmStridedBatched(
    handle,
    CUBLAS_OP_N, CUBLAS_OP_N,
    m, n, k,
    &alpha,
    d_A, m, m*k,
    d_B, k, k*n,
    &beta,
    d_C, m, m*n,
    batchCount);

2. Tensor Core 加速

cpp

// 设置使用Tensor Core
cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH);

// 使用FP16输入和FP32累加
cublasGemmEx(
    handle,
    CUBLAS_OP_N, CUBLAS_OP_N,
    m, n, k,
    &alpha,
    d_A, CUDA_R_16F, m,
    d_B, CUDA_R_16F, k,
    &beta,
    d_C, CUDA_R_16F, m,
    CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP);

3. 异步执行

cpp

cudaStream_t stream;
cudaStreamCreate(&stream);
cublasSetStream(handle, stream);

// 异步GEMM调用
cublasSgemm(handle, ...);

// 可以在此插入其他操作
cudaDeviceSynchronize(); // 等待完成

性能优化建议

  1. 矩阵布局:优先使用列主序 (cuBLAS默认)

  2. 内存对齐:确保数据对齐 (128字节边界)

  3. 批处理:对小矩阵使用批处理操作

  4. 避免同步:最小化主机-设备同步

  5. 算法选择

    • 大矩阵:使用 CUBLAS_GEMM_DEFAULT

    • 小矩阵:考虑 CUBLAS_GEMM_ALGO* 系列算法

cuBLAS 通常比 CPU BLAS 实现快 10-100 倍,特别适合深度学习、科学计算和工程仿真中的大规模线性代数运算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

byxdaz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值