Eigen 直线拟合/曲线拟合/圆拟合/椭圆拟合

一、直线拟合

使用Eigen库进行直线拟合是数据分析和科学计算中的常见任务,主要通过最小二乘法实现。以下是关键实现方法和示例:

  1. 核心原理
  • 最小二乘法通过最小化点到直线距离的平方和来求解最优直线参数
  • 间接平差法是最小二乘法的具体实现形式,适用于直线拟合场景
  • 通过构建误差方程并求解超定方程组获得直线系数
  1. Eigen实现方法
  • 使用Householder QR分解求解最小二乘问题
  • 可结合SVD分解提高数值稳定性
  • 支持二维和三维空间中的直线拟合
  1. 完整实现示例
    
    #include <iostream>
    #include <Eigen/Dense>
    #include <vector>
    
    using namespace Eigen;
    using namespace std;
    
    int main() {
        // 示例数据点
        vector<Vector2d> points = {
            {2.5, 2.4}, {0.5, 0.7}, {2.2, 2.9}, 
            {1.9, 2.2}, {3.1, 3.0}, {2.3, 2.7}
        };
    
        // 构建系数矩阵A和观测向量b
        MatrixXd A(points.size(), 2);
        VectorXd b(points.size());
        
        for(int i=0; i<points.size(); ++i) {
            A(i,0) = points[i][0];  // x值
            A(i,1) = 1;             // 常数项
            b(i) = points[i][1];    // y值
        }
    
        // 最小二乘求解 y = kx + b
        Vector2d coeff = A.householderQr().solve(b);
        double k = coeff[0];
        double b_val = coeff[1];
    
        cout << "拟合直线方程: y = " << k << "x + " << b_val << endl;
        return 0;
    }
    

该代码演示了二维空间中的直线拟合,输出斜率和截距。

二、曲线拟合

Eigen库是一个强大的C++线性代数库,可以用于多项式曲线拟合。以下是使用Eigen进行曲线拟合的关键点:

  1. 基本原理
  • 最小二乘法是曲线拟合的常用方法,通过求解超定方程组来最小化误差平方和
  • 范德蒙矩阵用于构建多项式拟合的方程组<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

byxdaz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值