ESA-2024《Joint Projected Fuzzy Neighborhood Preserving C-means Clustering with Local Adaptive Learn》

论文基本信息

  • 发表时间:2024年
  • 期刊Expert Systems With Applications (Volume 255, 124617)
  • 作者:Yunlong Gao, Zhenghong Xu, Feiping Nie, Yisong Zhang, Qingyuan Zhu, Guifang Shao
  • 机构:厦门大学、西北工业大学、德国亚琛工业大学等

核心思想

传统聚类算法(如模糊C均值,FCM)在降维时面临局部邻域结构不一致问题:高维空间中邻近的点在低维空间中可能被分配到不同簇,违反流形假设(邻近点应属同一簇)。本文提出联合投影模糊邻域保持C均值聚类(PFNPCM),通过同时学习以下四个部分解决该问题:

  1. 聚类中心 MMM
  2. 稀疏隶属度矩阵 UUU
  3. 投影子空间 WWW
  4. 结构化相似图 SSS
    核心创新:引入基于流形结构的模糊局部相似性度量 GijG_{ij}Gij,确保降维后邻近点隶属同一簇,同时利用 ℓ2,1\ell_{2,1}2,1-范数提升抗噪性。

目标函数

目标函数整合聚类、降维与图学习:
min⁡U,M,W,S∑i=1c∑j=1nuij(∥WTxj−mi∥2+γGij)+β∥U∥F2+α(∑j,k∥WTxj−WTxk∥2sjk+λ∥S∥F2)+ρ∥W∥2,1 \min_{U,M,W,S} \sum_{i=1}^c \sum_{j=1}^n u_{ij} \left( \|W^T x_j - m_i\|_2 + \gamma G_{ij} \right) + \beta \|U\|_F^2 +\\\alpha \left( \sum_{j,k} \|W^T x_j - W^T x_k\|_2 s_{jk} + \lambda \|S\|_F^2 \right) + \rho \|W\|_{2,1} U,M,W,Smini=1cj=1nuij(WTxjmi2+γGij)+βUF2+αj,kWTxjWTxk2sjk+λSF2+ρW2,1
约束条件

  • U1=1,U≥0U \mathbf{1} = \mathbf{1}, U \geq 0U1=1,U0(隶属度概率约束)
  • S1=1,S≥0S \mathbf{1} = \mathbf{1}, S \geq 0S1=1,S0(相似度矩阵行归一化)
  • WTStW=IW^T S_t W = IWTStW=I(投影正交约束,St=XTXS_t = X^T XSt=XTX)

关键组件

  1. 模糊局部因子 GijG_{ij}Gij
    Gij=∑k=1nsjk(1−uik)∥WTxk−mi∥2 G_{ij} = \sum_{k=1}^n s_{jk} (1 - u_{ik}) \|W^T x_k - m_i\|_2 Gij=k=1nsjk(1uik)WTxkmi2
    • sjks_{jk}sjk 控制样本 xjx_jxj 与邻居 xkx_kxk 的相似度
    • (1−uik)(1 - u_{ik})(1uik) 加速收敛,确保邻近点隶属度一致
  2. ℓ2,1\ell_{2,1}2,1-范数 ∥W∥2,1\|W\|_{2,1}W2,1:诱导投影矩阵行稀疏,提升特征选择能力。

优化过程(坐标下降法)

1. 固定 S,W,MS, W, MS,W,M,更新隶属度矩阵 UUU
  • 问题转化为约束二次规划:
    min⁡uj∥uj+tj2β∥22s.t.ujT1=1,uj≥0 \min_{u_j} \left\| u_j + \frac{t_j}{2\beta} \right\|_2^2 \quad \text{s.t.} \quad u_j^T \mathbf{1} = 1, u_j \geq 0 ujminuj+2βtj22s.t.ujT1=1,uj0
    其中 tj=(1−γ∑kuikskj)∥WTxj−mi∥2t_j = (1 - \gamma \sum_k u_{ik} s_{kj}) \|W^T x_j - m_i\|_2tj=(1γkuikskj)WTxjmi2
  • 通过KKT条件与牛顿法求解。
2. 固定 S,U,WS, U, WS,U,W,更新聚类中心 MMM
  • 采用迭代重加权优化:
    mi=WTmi~,mi~=∑jrijxj∑jrij m_i = W^T \widetilde{m_i}, \quad \widetilde{m_i} = \frac{\sum_j r_{ij} x_j}{\sum_j r_{ij}} mi=WTmi,mi=jrijjrijxj
    其中 rij=zij/(2∥WTxj−mi∥2)r_{ij} = z_{ij} / (2 \|W^T x_j - m_i\|_2)rij=zij/(2∥WTxjmi2)zij=uij+γ(∑kuikskj)(1−uij)z_{ij} = u_{ij} + \gamma (\sum_k u_{ik} s_{kj}) (1 - u_{ij})zij=uij+γ(kuikskj)(1uij)
3. 固定 S,U,MS, U, MS,U,M,更新投影矩阵 WWW
  • 广义特征分解求解:
    (A+αXTLX+ρD)W=λStW (A + \alpha X^T L X + \rho D) W = \lambda S_t W (A+αXTLX+ρD)W=λStW
    其中 A=XTCX+MTFM−2XTRTMA = X^T C X + M^T F M - 2X^T R^T MA=XTCX+MTFM2XTRTM(由定理1导出),LLL 为相似图拉普拉斯矩阵。
4. 固定 U,W,MU, W, MU,W,M,更新相似图 SSS
  • 按行独立求解:
    min⁡sk∥sk+dk2λ∥22s.t.skT1=1,sk≥0 \min_{s_k} \left\| s_k + \frac{d_k}{2\lambda} \right\|_2^2 \quad \text{s.t.} \quad s_k^T \mathbf{1} = 1, s_k \geq 0 skminsk+2λdk22s.t.skT1=1,sk0
    其中 djk=γ∑iuij(1−uik)∥WTxk−mi∥2+α∥WTxj−WTxk∥2d_{jk} = \gamma \sum_i u_{ij} (1 - u_{ik}) \|W^T x_k - m_i\|_2 + \alpha \|W^T x_j - W^T x_k\|_2djk=γiuij(1uik)WTxkmi2+αWTxjWTxk2

主要贡献

  1. 统一框架:同时学习聚类、降维、相似图,保留全局与局部判别信息。
  2. 模糊局部相似性度量 GijG_{ij}Gij:确保流形假设成立,解决邻近点标签不一致问题。
  3. 鲁棒性设计ℓ2,1\ell_{2,1}2,1-范数抑制噪声/异常值影响。
  4. 理论保证:证明算法收敛性(定理2),分析计算复杂度 O(d3+(n+d)qcnpt)O(d^3 + (n + d)q c n p t)O(d3+(n+d)qcnpt)
  5. 实验优势:在12个数据集上超越16种对比方法(如PCA、LPP、PCAN、RJSFCM等),ACC最高提升15%(ORL数据集)。

实验结果

1. 人工数据集验证
  • 平衡/不平衡簇:PFNPCM通过 GijG_{ij}Gij 纠正边界点错误分类(图1-2)。
  • 抗噪性:添加噪声特征后,PFNPCM精度下降最小(图3),因 ℓ2,1\ell_{2,1}2,1-范数和图优化增强鲁棒性。
2. 真实数据集性能
数据集最佳对比方法ACCPFNPCM ACC提升
ORL69.5% (RJSFCM)80.5%+11.0%
LEUML86.1% (RJSFCM)96.5%+10.4%
LUNG74.4% (ANPDP)86.5%+12.1%
  • 可视化验证:t-SNE与KNN图显示PFNPCM在低维空间类内紧致、类间分离(图7-8)。
3. 消融实验
  • 移除 GijG_{ij}Gij(PFNPCM0)导致ACC显著下降(图9),证明局部相似度量的必要性。
  • 参数 γ\gammaγ 需调小(通常 <1<1<1),过大则导致优化失效。
4. 抗噪实验
  • 在Yale数据集添加高斯/椒盐/遮挡噪声,PFNPCM的ACC/NMI始终最高(表6-7),因 ℓ2,1\ell_{2,1}2,1-范数加权抑制异常点。

算法实现流程

输入: 数据矩阵 X∈Rn×dX \in \mathbb{R}^{n \times d}XRn×d, 簇数 ccc, 降维维度 ppp, 近邻数 KKK, 参数 γ,α,ρ,β\gamma, \alpha, \rho, \betaγ,α,ρ,β
输出: U,M,W,SU, M, W, SU,M,W,S
1: 初始化 UUU (满足 U1=1,U≥0U\mathbf{1}=\mathbf{1}, U \geq 0U1=1,U0), SSS (行归一化), W=Id×pW = I_{d \times p}W=Id×p
2: while 未收敛 do
3: 计算辅助矩阵 Yij=1/(2∥WTxj−mi∥2)Y_{ij} = 1 / (2 \|W^T x_j - m_i\|_2)Yij=1/(2∥WTxjmi2)Rij=zijYijR_{ij} = z_{ij} Y_{ij}Rij=zijYij
4: 计算 BjkB_{jk}BjkDii=1/(2∥wi∥2)D_{ii} = 1 / (2 \|w_i\|_2)Dii=1/(2∥wi2)
5: 更新 UUU: 求解子问题 (14)
6: 更新 MMM: mi=WT(∑jrijxj/∑jrij)m_i = W^T (\sum_j r_{ij} x_j / \sum_j r_{ij})mi=WT(jrijxj/jrij)
7: 更新 WWW: 广义特征分解 (A+αXTLX+ρD)W=λStW(A + \alpha X^T L X + \rho D) W = \lambda S_t W(A+αXTLX+ρD)W=λStW
8: 更新 SSS: 逐行求解子问题 (33)
9: end while
10: 根据 UUU 分配样本标签: xjx_jxj 属于簇 iiiuij=max⁡kukju_{ij} = \max_k u_{kj}uij=maxkukj

关键实现细节

  • 初始化:用FCM生成初始 UUUMMM,减少随机性影响。
  • 复杂度优化:对高维数据(如 d>nd > nd>n)先用PCA降维。
  • 参数设置
    • β\betaβ 控制隶属度稀疏性(取小值)
    • ρ\rhoρ 控制特征选择强度(取大值)
    • γ\gammaγ 调节局部信息权重(取 10−3∼110^{-3} \sim 11031

总结

PFNPCM通过联合优化聚类、降维与图学习,解决了传统方法在低维空间违反流形假设的问题。其核心创新——模糊局部相似性度量 GijG_{ij}Gijℓ2,1\ell_{2,1}2,1-范数鲁棒设计,在多个数据集上显著提升聚类精度(最高+15%),且对噪声和异常值具有强鲁棒性。未来工作可探索参数 γ\gammaγ 的自适应选择及多目标优化的进一步加速。


理解模糊局部因子 GijG_{ij}Gij:核心机制与数学洞察


1. 算法设计动机:解决流形-聚类冲突

传统模糊C均值(FCM)在降维中存在根本性矛盾:

  • 流形假设:高维空间中邻近点 (sjks_{jk}sjk 大) 应属同一簇
  • 聚类现实:FCM根据距离分配标签,可能导致 ∥WTxj−mi∥\|W^Tx_j - m_i\|WTxjmi∥WTxk−mi∥\|W^Tx_k - m_i\|WTxkmi 差异大,使 uij≠uiku_{ij} \neq u_{ik}uij=uik
    GijG_{ij}Gij 的使命:充当流形结构聚类分配的协调器,通过惩罚项强制邻近点标签一致

2. 数学构造解析:结构化正则项

Gij=∑k=1n⏟邻居聚合sjk⏟空间相似度(1−uik)⏟标签差异∥WTxk−mi∥2⏟投影空间距离G_{ij} = \underbrace{\sum_{k=1}^n}_{\text{邻居聚合}} \underbrace{s_{jk}}_{\text{空间相似度}} \underbrace{(1 - u_{ik})}_{\text{标签差异}} \underbrace{\|W^T x_k - m_i\|_2}_{\text{投影空间距离}}Gij=邻居聚合k=1n空间相似度sjk标签差异(1uik)投影空间距离WTxkmi2

  • sjks_{jk}sjk:基于局部流形结构的相似度矩阵,通常由KNN图或热核函数生成:
    sjk={exp⁡(−∥xj−xk∥2σ)xk∈N(xj)0否则s_{jk} = \begin{cases} \exp\left(-\frac{\|x_j - x_k\|^2}{\sigma}\right) & x_k \in \mathcal{N}(x_j) \\ 0 & \text{否则} \end{cases}sjk={exp(σxjxk2)0xkN(xj)否则
  • (1−uik)(1-u_{ik})(1uik):标签不一致性度量器
    • uik→0u_{ik} \to 0uik0 (点kkk不属于簇iii),惩罚项激活
    • uik→1u_{ik} \to 1uik1 (点kkk属于簇iii),惩罚项消失
  • ∥WTxk−mi∥2\|W^T x_k - m_i\|_2WTxkmi2:投影空间的簇内紧致性约束

3. 优化动力学:如何驱动算法收敛

在目标函数中 GijG_{ij}Gij 通过 γ\gammaγ 加权影响聚类:
min⁡∑i,juij(∥WTxj−mi∥2⏟标准FCM项+γGij⏟局部一致性项)\min \sum_{i,j} u_{ij} \left( \underbrace{\|W^T x_j - m_i\|_2}_{\text{标准FCM项}} + \gamma \underbrace{G_{ij}}_{\text{局部一致性项}} \right)mini,juij标准FCMWTxjmi2+γ局部一致性项Gij

作用机制:
  1. 梯度引导GijG_{ij}Gijuiku_{ik}uik 的偏导数为:
    ∂Gij∂uik=−sjk∥WTxk−mi∥2\frac{\partial G_{ij}}{\partial u_{ik}} = -s_{jk} \|W^T x_k - m_i\|_2uikGij=sjkWTxkmi2
    该梯度推动 uiku_{ik}uik 增大(尤其当 sjks_{jk}sjk 大且 ∥WTxk−mi∥\|W^T x_k - m_i\|WTxkmi 小时)

  2. 标签传播:对样本 xjx_jxj 的优化会通过 sjks_{jk}sjk 连锁影响其邻居 {xk}\{x_k\}{xk} 的隶属度

  3. 鞍点逃离:当相邻点 (xj,xk)(x_j, x_k)(xj,xk)sjk>0s_{jk}>0sjk>0uij≫uiku_{ij} \gg u_{ik}uijuik 时,GijG_{ij}Gij 产生强梯度打破次优平衡


物理意义图解

考虑两个空间邻近点 (xj,xk)(x_j, x_k)(xj,xk) 和簇中心 mim_imi 的关系:

\begin{array}{c}
\text{ } \\
x_j \bullet \overset{\large s_{jk}}{\longrightarrow} \bullet x_k \\
\downarrow{\small \|W^Tx_j - m_i\|} \quad \downarrow{\small \|W^Tx_k - m_i\|} \\
m_i \bullet
\end{array}
  • uiku_{ik}uik 偏小GijG_{ij}Gij 增大 ⇒\Rightarrow 算法有两种选择:
    1. 增大 uiku_{ik}uik 使 (1−uik)(1-u_{ik})(1uik) 减小
    2. 调整 WWWmim_imi 减小 ∥WTxk−mi∥\|W^T x_k - m_i\|WTxkmi
      二者都促使 xkx_kxkxjx_jxj 同簇

与经典方法的对比

方法局部结构利用标签一致性机制
标准FCM❌ 忽略邻居关系仅依赖中心距离
FLICM✅ 固定空间邻居通过像素距离约束
PFNPCM的 GijG_{ij}Gij自适应图学习隶属度协同优化

创新本质GijG_{ij}Gij 建立了空间相似度sjks_{jk}sjk标签一致性(1−uik)(1-u_{ik})(1uik)投影空间结构∥WTxk−mi∥\|W^Tx_k - m_i\|WTxkmi 的闭环调节机制


工程实现启示

  1. 计算效率:实际只需计算 sjk>0s_{jk}>0sjk>0 的K近邻,复杂度 O(nK)O(nK)O(nK)
  2. 参数调节
    • γ\gammaγ 控制局部一致性强度,过大易导致过平滑
    • 初始化 sjks_{jk}sjk 时建议用自适应带宽 σ=1n∑∥xj−xk∥2\sigma = \frac{1}{n} \sum \|x_j - x_k\|^2σ=n1xjxk2
  3. 异常处理:当 ∥WTxk−mi∥=0\|W^T x_k - m_i\|=0WTxkmi=0 时,添加小扰动 ϵ\epsilonϵ 避免除零错误

总结

GijG_{ij}Gij 是流形学习与模糊聚类的桥梁性创新

  • 数学本质:基于图结构的条件惩罚项
  • 算法角色:邻域驱动的标签传播算子
  • 理论价值:解决了流形假设在模糊聚类中的形式化难题
    其核心在于通过 (1−uik)(1-u_{ik})(1uik)空间邻近性转化为标签相似性约束,使投影空间保持局部结构的同时完成聚类一致性优化,这是高维数据分析的重要突破。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Christo3

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值