论文基本信息
- 发表时间:2023年5月16日接受,2023年6月29日在线发表
- 期刊:Applied Intelligence(Springer期刊)
- DOI:10.1007/s10489-023-04716-z
核心思想
现有多视图子空间聚类方法仅关注一致表示(所有视图共享)或特定表示(各视图独立),忽略了二者结合对自表示结构学习的价值。本文提出 MSCLR(Multi-view Subspace Clustering via Low-rank Sparse Representation),核心创新点包括:
- 双表示结构:将自表示矩阵分解为一致部分 C C C(全局共享)和特定部分 S τ S_\tau Sτ(视图独有)。
- 结构化正则化:
- 对 C C C 施加 低秩约束(核范数 ∣ ∣ C ∣ ∣ ∗ ||C||_* ∣∣C∣∣∗)和 稀疏约束( L 1 L_1 L1 范数 ∣ ∣ C ∣ ∣ 1 ||C||_1 ∣∣C∣∣1)
- 对 S τ S_\tau Sτ 使用 Frobenius 范数 ∣ ∣ S τ ∣ ∣ F 2 ||S_\tau||_F^2 ∣∣Sτ∣∣F2 保证视图连通性
- 几何结构保留:通过流形正则化项 t r ( C L τ ∗ C T ) tr(CL_\tau^* C^T) tr(CLτ∗CT) 和 t r ( S τ L τ S τ T ) tr(S_\tau L_\tau S_\tau^T) tr(SτLτSτT) 保持低维子空间中的局部几何结构。
目标函数
min
C
,
S
τ
,
E
τ
∥
C
∥
∗
+
γ
1
∥
C
∥
1
+
∑
τ
=
1
M
(
γ
2
∥
S
τ
∥
F
2
+
γ
3
∥
E
τ
∥
F
2
+
γ
4
t
r
(
C
L
τ
∗
C
T
)
+
(
1
−
γ
4
)
t
r
(
S
τ
L
τ
S
τ
T
)
)
\min_{C,S_\tau,E_\tau} \|C\|_* + \gamma_1 \|C\|_1 + \sum_{\tau=1}^{M} \left( \gamma_2 \|S_\tau\|_F^2 + \gamma_3 \|E_\tau\|_F^2 + \gamma_4 tr(CL_\tau^* C^T) + (1-\gamma_4) tr(S_\tau L_\tau S_\tau^T) \right)
C,Sτ,Eτmin∥C∥∗+γ1∥C∥1+τ=1∑M(γ2∥Sτ∥F2+γ3∥Eτ∥F2+γ4tr(CLτ∗CT)+(1−γ4)tr(SτLτSτT))
约束条件:
X
τ
=
X
τ
C
+
X
τ
S
τ
+
E
τ
X_\tau = X_\tau C + X_\tau S_\tau + E_\tau
Xτ=XτC+XτSτ+Eτ
- 符号说明:
- C C C:一致表示矩阵(全局低秩稀疏)
- S τ S_\tau Sτ:视图 τ \tau τ 的特定表示矩阵
- E τ E_\tau Eτ:重建误差矩阵
- L τ ∗ L_\tau^* Lτ∗:共享拉普拉斯矩阵( L τ ∗ = ∑ τ = 1 M μ τ L τ L_\tau^* = \sum_{\tau=1}^M \mu_\tau L_\tau Lτ∗=∑τ=1MμτLτ)
- L τ L_\tau Lτ:视图 τ \tau τ 的拉普拉斯矩阵( L τ = D τ − G τ L_\tau = D_\tau - G_\tau Lτ=Dτ−Gτ)
- γ 1 , γ 2 , γ 3 , γ 4 \gamma_1,\gamma_2,\gamma_3,\gamma_4 γ1,γ2,γ3,γ4:权衡参数
优化过程(ALM算法)
使用增广拉格朗日乘子法(ALM) 交替优化变量:
- 引入辅助变量
K
K
K 解耦核范数:
Φ = ∥ K ∥ ∗ + γ 1 ∥ C ∥ 1 + ∑ τ = 1 M ( ⋯ ) + ⟨ ψ τ 1 , X τ − X τ C − X τ S τ − E τ ⟩ + ⟨ ψ τ 2 , C − K ⟩ + η 2 ( ∥ X τ − X τ C − X τ S τ − E τ ∥ F 2 + ∥ C − K ∥ F 2 ) \Phi = \|K\|_* + \gamma_1 \|C\|_1 + \sum_{\tau=1}^{M} \left( \cdots \right) + \langle \psi_\tau^1, X_\tau - X_\tau C - X_\tau S_\tau - E_\tau \rangle + \langle \psi_\tau^2, C - K \rangle + \frac{\eta}{2} \left( \|X_\tau - X_\tau C - X_\tau S_\tau - E_\tau\|_F^2 + \|C - K\|_F^2 \right) Φ=∥K∥∗+γ1∥C∥1+τ=1∑M(⋯)+⟨ψτ1,Xτ−XτC−XτSτ−Eτ⟩+⟨ψτ2,C−K⟩+2η(∥Xτ−XτC−XτSτ−Eτ∥F2+∥C−K∥F2) - 交替更新:
- 更新
K
K
K:通过奇异值阈值(SVT)求解
K = arg min 1 η ∥ K ∥ ∗ + 1 2 ∥ K − ( C + ψ τ 2 η ) ∥ F 2 K = \arg \min \frac{1}{\eta} \|K\|_* + \frac{1}{2} \left\| K - \left( C + \frac{\psi_\tau^2}{\eta} \right) \right\|_F^2 K=argminη1∥K∥∗+21 K−(C+ηψτ2) F2 - 更新
C
C
C:闭式解
C = ( η I + η X τ T X τ + 2 γ 4 L τ + γ 1 I ) − 1 ( η X τ T X τ + X τ ψ τ 1 − η X τ T X τ S τ − η X τ T E τ + η K + ψ τ 2 ) C = \left( \eta I + \eta X_\tau^T X_\tau + 2\gamma_4 L_\tau + \gamma_1 I \right)^{-1} \left( \eta X_\tau^T X_\tau + X_\tau \psi_\tau^1 - \eta X_\tau^T X_\tau S_\tau - \eta X_\tau^T E_\tau + \eta K + \psi_\tau^2 \right) C=(ηI+ηXτTXτ+2γ4Lτ+γ1I)−1(ηXτTXτ+Xτψτ1−ηXτTXτSτ−ηXτTEτ+ηK+ψτ2) - 更新
S
τ
S_\tau
Sτ:
S τ = ( 2 γ 2 I + η X τ X τ T + ( 1 − γ 4 ) L τ ) − 1 ( ψ τ 1 X τ + η X τ X τ T − η X τ C X τ T − η E τ X τ ) S_\tau = \left( 2\gamma_2 I + \eta X_\tau X_\tau^T + (1-\gamma_4) L_\tau \right)^{-1} \left( \psi_\tau^1 X_\tau + \eta X_\tau X_\tau^T - \eta X_\tau C X_\tau^T - \eta E_\tau X_\tau \right) Sτ=(2γ2I+ηXτXτT+(1−γ4)Lτ)−1(ψτ1Xτ+ηXτXτT−ηXτCXτT−ηEτXτ) - 更新
E
τ
E_\tau
Eτ:
E τ = ( η + 2 γ 3 ) − 1 ( η ( X τ − X τ C − X τ S τ ) + ψ τ 1 ) E_\tau = (\eta + 2\gamma_3)^{-1} \left( \eta (X_\tau - X_\tau C - X_\tau S_\tau) + \psi_\tau^1 \right) Eτ=(η+2γ3)−1(η(Xτ−XτC−XτSτ)+ψτ1) - 更新拉格朗日乘子 ψ τ 1 , ψ τ 2 \psi_\tau^1, \psi_\tau^2 ψτ1,ψτ2。
- 更新
K
K
K:通过奇异值阈值(SVT)求解
- 迭代直至收敛(最大迭代次数或误差 < 1 0 − 7 < 10^{-7} <10−7)。
主要贡献
- 双表示建模:首次联合学习一致表示 C C C 和视图特定表示 S τ S_\tau Sτ,增强自表示结构的判别性。
- 结构化正则化:
- L 1 L_1 L1 范数促进 C C C 的稀疏性
- 流形正则化保留几何结构
- 高效优化:ALM 框架下子问题均有闭式解,保证收敛性。
- 实验验证:在 9 个基准数据集上超越 11 种对比方法(如表 4-7 所示),例如:
- BBCSport 数据集:ACC 达 86.53%(比最优基线提升 ≈4%)
- NGs 数据集:NMI 达 93.89%(FMRSC 基点为 91.73%)
算法实现步骤
输入:多视图数据 $X_\tau \in \mathbb{R}^{D \times N}$,聚类数 $k$,近邻数 $p$,参数 $\gamma_1,\gamma_2,\gamma_3,\gamma_4$
输出:亲和力矩阵 $A$
1. 初始化:$C, S_\tau, E_\tau, \psi_\tau^1, \psi_\tau^2 \gets 0$;$\eta \gets 10^{-6}$, $\eta_{\max} \gets 10^3$, $\varphi \gets 1.1$
2. While 未收敛且未达最大迭代次数:
a. 通过 SVT 更新 $K$(公式 9)
b. 更新 $C$(公式 11)
c. 更新 $S_\tau$(公式 13)
d. 更新 $E_\tau$(公式 15)
e. 更新拉格朗日乘子 $\psi_\tau^1, \psi_\tau^2$(公式 16)
f. 更新 $\eta \gets \min(\varphi \eta, \eta_{\max})$
g. 检查收敛条件:$\max\|X_\tau - X_\tau(C + S_\tau) - E_\tau\|_\infty < 10^{-7}$
3. 计算亲和力矩阵:$A = \frac{C + C^T}{2} + \frac{1}{M} \sum_{\tau=1}^{M} \frac{S_\tau + S_\tau^T}{2}$
4. 对 $A$ 应用谱聚类(Ng 算法)获得最终聚类结果
复杂度: O ( t ( M N 2 + M D N ) ) O(t(MN^2 + MDN)) O(t(MN2+MDN))( t t t 为迭代次数, M M M 为视图数, N N N 为样本数)。
总结
MSCLR 通过联合低秩稀疏表示和流形正则化,解决了多视图子空间聚类中一致性与特定性表示的平衡问题。其创新性目标函数设计、高效的 ALM 优化以及在 9 个数据集上的显著性能提升(平均 ACC/NMI 提升 5–15%),证实了方法的有效性。未来方向包括处理不完整视图和端到端深度表示学习。