2. 核心思想
论文提出了一种基于概念分解(Concept Factorization, CF)的多视图聚类方法,称为 多流形学习概念分解(MMLCF, Multi-Manifold Learning Concept Factorization)。其核心思想是通过结合多视图数据的内在几何结构和一致性信息,提升聚类性能。以下是核心思想的几个关键点:
- 多视图数据处理:多视图数据指的是同一个对象在不同视角(如文本、图像、音频等)下的多种表示形式。MMLCF 旨在融合这些视图的信息,挖掘数据间的互补性和一致性。
- 流形学习:每个视图的数据具有其独特的几何结构(流形)。MMLCF 通过流形正则化(Manifold Regularization)保留每个视图的局部几何结构,并通过一致性控制项确保不同视图间的协同性。
- 概念分解:基于 CF 的框架,MMLCF 将数据分解为低维表示,结合视图权重和流形正则化,增强聚类效果。
- 迭代优化:通过迭代优化非凸目标函数,MMLCF 实现多视图数据的联合表示学习和聚类。
3. 目标函数
MMLCF 的目标函数旨在最小化多视图数据的重构误差,同时保留每个视图的流形结构,并通过一致性控制项协调不同视图的表示。目标函数可以表示为:
J=∑i=1Mωi(∥Xi−WiViT∥F2+λTr(ViTLiVi))+η∥V∗−Vi∥F2 J = \sum_{i=1}^M \omega_i \left( \| X_i - W_i V_i^T \|_F^2 + \lambda \text{Tr}(V_i^T L_i V_i) \right) + \eta \| V^* - V_i \|_F^2 J=i=1∑Mωi(∥Xi−WiViT∥F2+λTr(ViTLiVi))+η∥V∗−Vi∥F2
-
符号说明:
- MMM:视图数量。
- XiX_iXi:第 iii 个视图的数据矩阵,维度为 n×din \times d_in×di(nnn 为样本数,did_idi 为特征维度)。
- WiW_iWi:第 iii 个视图的关联矩阵(Association Matrix),表示数据点与概念的映射。
- ViV_iVi:第 iii 个视图的表示矩阵(Representation Matrix),表示低维表示。
- V∗V^*V∗:一致性表示矩阵(Consensus Representation Matrix),用于协调不同视图的表示。
- ωi\omega_iωi:第 iii 个视图的权重,初始值为 1/M1/M1/M。
- LiL_iLi:第 iii 个视图的拉普拉斯矩阵(Laplacian Matrix),用于捕捉流形结构。
- λ,η\lambda, \etaλ,η:正则化参数,分别控制流形正则化和一致性约束的强度。
- ∥⋅∥F2\| \cdot \|_F^2∥⋅∥F2:Frobenius 范数的平方,表示矩阵的重构误差。
- Tr(⋅)\text{Tr}(\cdot)Tr(⋅):矩阵的迹运算。
-
目标函数分解:
- 重构误差:∥Xi−WiViT∥F2\| X_i - W_i V_i^T \|_F^2∥Xi−WiViT∥F2 最小化数据重构误差,确保分解后的表示能够准确还原原始数据。
- 流形正则化:λTr(ViTLiVi)\lambda \text{Tr}(V_i^T L_i V_i)λTr(ViTLiVi) 保留每个视图的局部几何结构,通过拉普拉斯矩阵约束相邻样本在低维空间中的相似性。
- 一致性约束:η∥V∗−Vi∥F2\eta \| V^* - V_i \|_F^2η∥V∗−Vi∥F2 强制不同视图的表示矩阵 ViV_iVi 趋向于一致性表示 V∗V^*V∗,从而增强视图间的协同性。
4. 目标函数的优化过程
由于目标函数 JJJ 是非凸的,MMLCF 采用交替优化策略,通过迭代更新 WiW_iWi、ViV_iVi、V∗V^*V∗ 和 LiL_iLi 来逼近局部最优解。优化过程在算法 1(MMLCF 算法)中详细描述:
-
初始化:
- 归一化每个视图的数据矩阵 XiX_iXi,使得 ∥Xi∥F=1\left\| X_i \right\|_F = 1∥Xi∥F=1。
- 计算每个视图的拉普拉斯矩阵 LiL_iLi,基于最近邻图(Nearest Neighbor Graph)。
- 初始化 WiW_iWi、ViV_iVi 和 V∗V^*V∗ 为随机非负矩阵,视图权重 ωi=1/M\omega_i = 1/Mωi=1/M。
-
迭代更新:
- 更新 WiW_iWi:固定 ViV_iVi 和 V∗V^*V∗,优化 WiW_iWi,通过最小化以下子问题:
minWi∥Xi−WiViT∥F2 \min_{W_i} \| X_i - W_i V_i^T \|_F^2 Wimin∥Xi−WiViT∥F2
使用乘法更新规则(Multiplicative Update Rule):
Wi←Wi⋅(XiVi)(WiViTVi) W_i \leftarrow W_i \cdot \frac{(X_i V_i)}{(W_i V_i^T V_i)} Wi←Wi⋅(WiViTVi)(XiVi) - 更新 ViV_iVi:固定 WiW_iWi 和 V∗V^*V∗,优化 ViV_iVi,通过最小化:
minVi∥Xi−WiViT∥F2+λTr(ViTLiVi)+η∥V∗−Vi∥F2 \min_{V_i} \| X_i - W_i V_i^T \|_F^2 + \lambda \text{Tr}(V_i^T L_i V_i) + \eta \| V^* - V_i \|_F^2 Vimin∥Xi−WiViT∥F2+λTr(ViTLiVi)+η∥V∗−Vi∥F2
使用乘法更新规则:
Vi←Vi⋅(WiTXi+ηV∗)(WiTWiVi+λLiVi+ηVi) V_i \leftarrow V_i \cdot \frac{(W_i^T X_i + \eta V^*)}{(W_i^T W_i V_i + \lambda L_i V_i + \eta V_i)} Vi←Vi⋅(WiTWiVi+λLiVi+ηVi)(WiTXi+ηV∗) - 更新 V∗V^*V∗:固定 WiW_iWi 和 ViV_iVi,优化 V∗V^*V∗,通过最小化:
minV∗∑i=1Mη∥V∗−Vi∥F2 \min_{V^*} \sum_{i=1}^M \eta \| V^* - V_i \|_F^2 V∗mini=1∑Mη∥V∗−Vi∥F2
解析解为:
V∗=1M∑i=1MVi V^* = \frac{1}{M} \sum_{i=1}^M V_i V∗=M1i=1∑MVi - 更新拉普拉斯矩阵 LiL_iLi:固定 WiW_iWi、ViV_iVi 和 V∗V^*V∗,通过最小化流形正则化项更新最近邻图的权重,优化公式为:
minLiTr(ViTLiVi) \min_{L_i} \text{Tr}(V_i^T L_i V_i) LiminTr(ViTLiVi)
具体更新规则参考文献 [25] 的自适应邻居方法。
- 更新 WiW_iWi:固定 ViV_iVi 和 V∗V^*V∗,优化 WiW_iWi,通过最小化以下子问题:
-
归一化:在每次迭代后,对 WiW_iWi 和 ViV_iVi 进行归一化以确保数值稳定性,公式为:
Wi←Wi∑jWij2,Vi←Vi∑jVij2 W_i \leftarrow \frac{W_i}{\sqrt{\sum_j W_{ij}^2}}, \quad V_i \leftarrow \frac{V_i}{\sqrt{\sum_j V_{ij}^2}} Wi←∑jWij2Wi,Vi←∑jVij2Vi -
收敛判断:重复上述步骤,直到目标函数收敛或达到最大迭代次数。
-
收敛性证明:论文通过引入辅助函数(Auxiliary Function)证明了乘法更新规则的非递增性(Lemma 1)。具体而言,辅助函数 G(x,x′)G(x, x')G(x,x′) 满足 G(x,x′)≥F(x)G(x, x') \geq F(x)G(x,x′)≥F(x) 和 G(x,x)=F(x)G(x, x) = F(x)G(x,x)=F(x),确保每次更新使目标函数值减小或保持不变。
5. 主要贡献点
- 提出 MMLCF 框架:结合多视图数据的流形结构和一致性约束,提出了一种新的基于概念分解的多视图聚类方法,显著提升聚类性能。
- 流形正则化与一致性融合:通过引入流形正则化和一致性控制项,MMLCF 能够同时保留每个视图的局部几何结构并协调多视图表示。
- 迭代优化算法:设计了一种高效的迭代优化策略,通过交替更新 WiW_iWi、ViV_iVi、V∗V^*V∗ 和 LiL_iLi,解决了非凸目标函数的优化问题。
- 广泛实验验证:在多个基准数据集上验证了 MMLCF 的优越性,展示了其在准确率(ACC)、归一化互信息(NMI)、F 分数(F-score)等指标上的显著改进。
6. 实验结果
论文在多个公开数据集上评估了 MMLCF 的性能,并与基线方法(如 K-means、CF、NMF、NCMDF、NMMF、PSNMF、MCGL 等)进行了比较。以下是实验结果的总结:
数据集
实验使用了以下基准数据集(见表 1):
- BBC Sport:5 个簇,2 个视图,544 个样本,维度 (3183, 3203)。
- BBC:2 个簇,4 个视图,685 个样本,维度 (4630, 4633, 4634, 4634)。
- 3Sources:5 个簇,2 个视图,1000 个样本,维度 (500, 500, 500, 500)。
- Wikipedia Articles:10 个簇,2 个视图,693 个样本,维度 (128, 101)。
- WebKB:4 个簇,5 个视图,202 个样本,维度 (500, 500, 500)。
- Reuters:6 个簇,2 个视图,1000 个样本,维度 (2000, 2000, 2000, 2000, 2000)。
- CiteSeer:6 个簇,2 个视图,3312 个样本,维度 (3312, 3703)。
- Texas:5 个簇,2 个视图,187 个样本,维度 (1702, 187)。
评估指标
- 准确率(ACC):衡量聚类结果与真实标签的匹配程度。
- F 分数(F-score):综合精度和召回率的指标。
- 归一化互信息(NMI)和精度(Precision):用于进一步评估聚类质量。
结果分析
-
表 2(ACC):
- MMLCF 在多个数据集上的 ACC 显著优于基线方法。例如,在 BBC 数据集上,MMLCF 的 ACC 达到 50%以上,而 K-means 和 CF 的 ACC 分别为 44.29% 和 56.34%。
- 在 Wikipedia Articles 数据集上,MMLCF 的 ACC 超过 55%,优于 NCMDF(30%-40%)和 NMMF(约 50%)。
-
表 4(F-score):
- MMLCF 在 F-score 上表现优异,例如在 3Sources 数据集上达到 49.73%,相比 K-means(35.26%)和 CF(49.73%)有显著提升。
- 在 Texas 数据集上,MMLCF 的 F-score 为 41.1%,优于 K-means(39.3%)和 NMF(41.2%)。
-
表 6(执行时间):
- MMLCF 的执行时间在合理范围内,例如在 BBC Sport 数据集上为 36.21 秒,表明其计算效率可接受。
-
参数敏感性:
- 图 3 和图 4 显示了 MMLCF 对参数 β\betaβ、γ\gammaγ 和 η\etaη 的敏感性分析。结果表明,MMLCF 在参数变化下具有较好的鲁棒性,尤其在 η\etaη 的不同取值下,ACC 在 3Sources 数据集上保持稳定。
-
比较分析:
- 与单视图方法(如 K-means、CF)相比,MMLCF 通过融合多视图信息显著提升了性能。
- 与其他多视图方法(如 NMMF、NCMDF、MCGL)相比,MMLCF 通过流形正则化和一致性约束实现了更好的聚类性能,尤其在高维和复杂数据集上。
7. 算法实现过程
以下是 MMLCF 算法的详细实现步骤,基于算法 1 的描述:
输入
- 数据矩阵 X={X1,X2,…,XM}X = \{X_1, X_2, \dots, X_M\}X={X1,X2,…,XM},每个 XiX_iXi 为第 iii 个视图的数据。
- 簇数量 ccc。
- 参数 ρ,γ,λ,η\rho, \gamma, \lambda, \etaρ,γ,λ,η 和最近邻数量 ppp。
输出
- 最终关联矩阵 W∗W^*W∗。
- 最终表示矩阵 V∗V^*V∗。
- 一致性矩阵 V∗V^*V∗。
实现步骤
-
预处理:
- 对每个视图的数据矩阵 XiX_iXi 进行归一化:∥Xi∥F=1\left\| X_i \right\|_F = 1∥Xi∥F=1。
- 构建最近邻图,计算每个视图的拉普拉斯矩阵 LiL_iLi,基于 ppp 个最近邻。
- 初始化 WiW_iWi、ViV_iVi 和 V∗V^*V∗ 为随机非负矩阵,视图权重 ωi=1/M\omega_i = 1/Mωi=1/M。
-
迭代优化:
- 循环直到收敛或达到最大迭代次数:
- 对于每个视图 i=1,2,…,Mi = 1, 2, \dots, Mi=1,2,…,M:
- 更新 WiW_iWi:使用公式 Wi←Wi⋅(XiVi)(WiViTVi)W_i \leftarrow W_i \cdot \frac{(X_i V_i)}{(W_i V_i^T V_i)}Wi←Wi⋅(WiViTVi)(XiVi)。
- 更新 ViV_iVi:使用公式 Vi←Vi⋅(WiTXi+ηV∗)(WiTWiVi+λLiVi+ηVi)V_i \leftarrow V_i \cdot \frac{(W_i^T X_i + \eta V^*)}{(W_i^T W_i V_i + \lambda L_i V_i + \eta V_i)}Vi←Vi⋅(WiTWiVi+λLiVi+ηVi)(WiTXi+ηV∗)。
- 归一化 WiW_iWi 和 ViV_iVi:使用公式 Wi←Wi∑jWij2W_i \leftarrow \frac{W_i}{\sqrt{\sum_j W_{ij}^2}}Wi←∑jWij2Wi,Vi←Vi∑jVij2V_i \leftarrow \frac{V_i}{\sqrt{\sum_j V_{ij}^2}}Vi←∑jVij2Vi。
- 更新 V∗V^*V∗:计算 V∗=1M∑i=1MViV^* = \frac{1}{M} \sum_{i=1}^M V_iV∗=M1∑i=1MVi。
- 更新 LiL_iLi:根据自适应邻居方法更新拉普拉斯矩阵 LiL_iLi,具体参考文献 [25]。
- 对于每个视图 i=1,2,…,Mi = 1, 2, \dots, Mi=1,2,…,M:
- 循环直到收敛或达到最大迭代次数:
-
收敛检查:
- 检查目标函数 JJJ 的值是否收敛(即变化小于某个阈值)或是否达到最大迭代次数。
- 如果收敛,返回最终的 W∗W^*W∗、V∗V^*V∗ 和 V∗V^*V∗。
-
聚类:
- 使用 V∗V^*V∗ 作为最终的低维表示,应用 K-means 或其他聚类算法得到最终的簇分配。
计算复杂度
- 最近邻图构建:O(pn2)O(p n^2)O(pn2),其中 ppp 为最近邻数量,nnn 为样本数。
- 核矩阵计算:O(mn2)O(m n^2)O(mn2),其中 mmm 为视图数量。
- 乘法更新:每次迭代的复杂度为 O(mnc)O(m n c)O(mnc),其中 ccc 为簇数量。
- 总复杂度:假设迭代 ttt 次,总复杂度为 O(pn2+mn2+tmnc)O(p n^2 + m n^2 + t m n c)O(pn2+mn2+tmnc)。
总结
这篇论文提出了一种创新的多视图聚类方法 MMLCF,通过结合概念分解、流形正则化和一致性约束,显著提升了多视图数据的聚类性能。其目标函数综合考虑了数据重构、流形结构和视图间一致性,通过迭代优化实现局部最优解。实验结果表明,MMLCF 在多个基准数据集上优于传统单视图和多视图聚类方法,具有较强的鲁棒性和高效性。算法实现过程清晰,适合在高维、复杂多视图数据场景中应用。