Self-supervised Symmetric Nonnegative Matrix Factorization (S3NMF)


2. 核心思想

该论文的核心是提出一种 自监督对称非负矩阵分解 (Self-supervised SNMF, S3NMF),用于提升聚类性能。

  • 背景:SNMF (Symmetric NMF) 在聚类上效果很好,但由于其目标函数是非凸的,非常依赖初始化,差的初始化会导致糟糕的聚类结果。

  • 思路:作者受到 集成聚类 (Ensemble Clustering) 的启发,反而利用这种“对初始化敏感”的特性。

    • 通过多次随机初始化运行 SNMF,得到多个候选分解结果。
    • 对这些结果进行质量评估并加权融合,构建一个新的、更优的相似度矩阵。
    • 在新的矩阵上继续迭代 SNMF → 融合 → 更新,逐步提升聚类性能。

其本质是 将 SNMF 的随机初始化带来的多样性转化为逐步增强的信号,从而不依赖外部监督信息,也能获得更好的聚类表现。


3. 目标函数

基本的 SNMF 目标函数是:

min⁡V≥0  ∥W−VVT∥F2 \min_{V \ge 0} \; \| W - VV^T \|_F^2 V0minWVVTF2

其中 W∈Rn×nW \in \mathbb{R}^{n \times n}WRn×n 是样本相似度矩阵,V∈Rn×kV \in \mathbb{R}^{n \times k}VRn×k 是非负因子矩阵。

S3NMF 的目标函数是在多次分解的结果上加入权重学习:

min⁡Vm,S,α  ∑m=1b(αm)τ ∥S−VmVmT∥F2 \min_{V_m, S, \alpha} \; \sum_{m=1}^b (\alpha_m)^\tau \, \| S - V_m V_m^T \|_F^2 Vm,S,αminm=1b(αm)τSVmVmTF2

约束条件:

  • V_m≥0,;∀mV\_m \ge 0, ; \forall mV_m0,;m
  • α≥0,;αT1=1\alpha \ge 0, ; \alpha^T 1 = 1α0,;αT1=1

其中:

  • bbb = 初始化次数(即多个 SNMF 分解的数量),
  • α\alphaα = 权重向量(自适应学习,衡量每个分解结果的质量),
  • SSS = 新构造的相似度矩阵,更新方式:

S=∑m=1bαm MmMmT S = \sum_{m=1}^b \alpha_m \, M_m M_m^T S=m=1bαmMmMmT

(M_mM\_mM_m 是第 mmm 次分解得到的聚类划分矩阵)。


4. 优化过程

优化通过 交替迭代 (Alternating Optimization) 完成:

  1. 固定 α\alphaα 更新 V_mV\_mV_m
    子问题为

    min⁡Vm≥0(αm)τ ∥S−VmVmT∥F2 \min_{V_m \ge 0} (\alpha_m)^\tau \, \| S - V_m V_m^T \|_F^2 Vm0min(αm)τSVmVmTF2

    这是一个四阶非凸问题,作者利用 辅助函数法 (Auxiliary Function Method) 推导出乘法更新规则:

    Vm,ij(t+1)=Vm,ij(t)((SVm(t))ij(Vm(t)Vm(t)TVm(t))ij)1/4 V_{m,ij}^{(t+1)} = V_{m,ij}^{(t)} \left( \frac{(S V_m^{(t)})_{ij}}{(V_m^{(t)} V_m^{(t)T} V_m^{(t)})_{ij}} \right)^{1/4} Vm,ij(t+1)=Vm,ij(t)((Vm(t)Vm(t)TVm(t))ij(SVm(t))ij)1/4

  2. 固定 V_mV\_mV_m 更新 α\alphaα
    子问题为

    min⁡α≥0,αT1=1  ∑m(αm)τhm,hm=∥S−VmVmT∥F2 \min_{\alpha \ge 0, \alpha^T1=1} \; \sum_m (\alpha_m)^\tau h_m, \quad h_m = \| S - V_m V_m^T \|_F^2 α0,αT1=1minm(αm)τhm,hm=SVmVmTF2

    通过拉格朗日乘子法,得到解析解:

    αm=(τhm)11−τ∑j=1b(τhj)11−τ \alpha_m = \frac{( \tau h_m )^{\tfrac{1}{1-\tau}}}{\sum_{j=1}^b ( \tau h_j )^{\tfrac{1}{1-\tau}}} αm=j=1b(τhj)1τ1(τhm)1τ1

    保证 α_m≥0\alpha\_m \ge 0α_m0∑α_m=1\sum \alpha\_m = 1α_m=1

  3. 更新 $S$:
    按公式

    S=∑m=1bαmMmMmT S = \sum_{m=1}^b \alpha_m M_m M_m^T S=m=1bαmMmMmT

  4. 迭代直到收敛或满足停止条件:利用 平均互信息 (ANMI) 衡量不同聚类划分间的一致性,若一致性下降则停止。


5. 主要贡献点

  • 提出 S3NMF:一种无需额外监督信息的自监督 SNMF,能够逐步提升聚类性能。
  • 目标函数新设计:通过引入加权融合机制,将多个 SNMF 初始化结果联合建模。
  • 优化算法:提出基于辅助函数和交替迭代的方法,推导了更新公式,并证明了收敛性。
  • 停止准则:基于聚类结果间一致性的 ANMI 作为自适应停止条件,避免过拟合或震荡。
  • 实验效果显著:在 10 个数据集上对比 12 种方法,S3NMF 在 44/50 种情况下取得最佳性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Christo3

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值