数学建模学习(131):使用Python基于VIKOR算法的多准则决策分析

### VIKOR 算法的详细介绍与实现方法 VIKOR(VIšekriterijumsko KOmpromisno Rangiranje i izbor)是一种多属性决策方法,旨在通过折中和平衡来选择最佳方案。该方法特别适用于涉及多个目标或因素的复杂决策问题[^1]。 #### 1. 基本原理 VIKOR 方法的核心思是寻找一个能够最大限地减少群体遗憾的妥协。它通过计算每个备选方案理想之间的距离,评估其优劣程,并最终确定最优方案。具体步骤包括: - **归一化属性值**:将不同量纲的属性值标准化为无量纲形式。 - **计算加权归一化值**:结合权重向量对归一化后的属性值进行加权处理。 - **定义正理想**:分别确定每个属性的最大值(正理想)和最小值(理想)。 - **计算评分函数**:引入两个关键指标 $ S_i $ 和 $ R_i $,分别表示群体效用和个体遗憾。基于此,构造综合评分函数 $ Q_i $。 $$ Q_i = v \cdot \frac{S_i - S^*}{S^- - S^*} + (1 - v) \cdot \frac{R_i - R^*}{R^- - R^*} $$ 其中: - $ S^* $ 和 $ S^- $ 分别为所有方案中 $ S_i $ 的最小值和最大值; - $ R^* $ 和 $ R^- $ 分别为所有方案中 $ R_i $ 的最小值和最大值; - $ v $ 是权重系数,反映群体效用与个体遗憾之间的相对重要性。 根据 $ Q_i $ 的大小排序,选择 $ Q_i $ 最小的方案作为最优[^1]。 #### 2. 实现方法 以下是使用 MATLAB 实现 VIKOR 算法的一个简单示例: ```matlab function [best_option, Q_values] = vikor_algorithm(decision_matrix, weights, v) % decision_matrix: 决策矩阵 (行表示方案,列表示属性) % weights: 属性权重向量 % v: 权重系数 (0 <= v <= 1) % 归一化决策矩阵 [m, n] = size(decision_matrix); normalized_matrix = zeros(m, n); for j = 1:n if all(decision_matrix(:, j) >= 0) % 成本型属性 normalized_matrix(:, j) = (max(decision_matrix(:, j)) - decision_matrix(:, j)) / ... (max(decision_matrix(:, j)) - min(decision_matrix(:, j))); else % 效益型属性 normalized_matrix(:, j) = (decision_matrix(:, j) - min(decision_matrix(:, j))) / ... (max(decision_matrix(:, j)) - min(decision_matrix(:, j))); end end % 计算加权归一化值 weighted_normalized_matrix = normalized_matrix .* weights; % 确定正理想 S_star = sum(max(weighted_normalized_matrix)); S_minus = sum(min(weighted_normalized_matrix)); % 计算 Si 和 Ri S_values = sum(weighted_normalized_matrix, 2); R_values = max(weighted_normalized_matrix, [], 2); % 计算 Qi Q_values = v * ((S_values - S_star) / (S_minus - S_star)) + ... (1 - v) * ((R_values - min(R_values)) / (max(R_values) - min(R_values))); % 找到最优方案 [~, best_option] = min(Q_values); end ``` #### 3. 应用场景 VIKOR 方法广泛应用于工程、经济、环境等领域中的多属性决策问题。例如,在供应商选择中,可以考虑价格、质量、交货时间等多个属性;在项目投资中,可以综合评估风险、收益、周期等因素[^2]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值