【从零开始学习SLAM】将坐标系变换关系发布到话题 tf_static

本文从零开始介绍如何在ROS中学习SLAM,重点讲解如何使用tf_static发布静态坐标系变换。内容包括理解urdf模型中的坐标系关系、使用rosrun static_transform_publisher发布静态转换,以及通过launch文件管理静态坐标系,并介绍了tf_echo工具用于检查坐标变换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

urdf&tf_static

/tf_static话题发布的是urdf模型中写的坐标系关系,比如两个轮子之间坐标系关系永远不变
urdf采用link和joint树状结构来描述机器人,首先需要定义一个base_link,表示坐标系的原点

http://wiki.ros.org/urdf/Tutorials
https://github.com/ros/urdf_tutorial/tree/master

创建坐标系base_link

在这里插入图片描述

joint 坐标系之间的关系(指明父子坐标系是谁)

在这里插入图片描述
在这里插入图片描述

可视化显示坐标系之间的关系

学习SLAM(Simultaneous Localization and Mapping)是一个相对复杂的过程,但是你可以按照以下步骤开始学习: 1. 学习基础知识:首先,你需要了解机器人感知、运动控制和地图构建的基本概念。熟悉概率和统计的基本概念也是非常有帮助的,因为SLAM中经常使用到这些方法。 2. 学习传感器:了解常用的传感器,如激光雷达、摄像头和惯性测量单元(IMU),以及它们的工作原理、数据处理方法和误差模型。 3. 学习SLAM算法:掌握常见的SLAM算法,如扩展卡尔曼滤波(EKF)、粒子滤波(PF)和图优化。理解这些算法的原理和实现方式是非常重要的。 4. 编程实践:选择一种编程语言(如C++或Python)并开始实践编写SLAM算法的代码。使用开源库,如ROS(Robot Operating System)或PCL(Point Cloud Library)可以加速你的学习过程。 5. 实验和调试:通过实验和调试来验证你的SLAM算法。使用模拟器或真实的机器人进行实验,分析结果并调整算法参数以优化性能。 6. 阅读论文和参考资料:定期阅读与SLAM相关的最新研究论文和参考资料,了解最新的算法和技术发展。 7. 实际项目:最终,尝试应用你所学的知识到实际项目中。参与开源项目或者参加机器人比赛等活动,将帮助你更深入地理解和实践SLAM技术。 需要注意的是,SLAM是一个广泛而复杂的领域,需要持续学习和实践才能真正掌握。所以,耐心和持之以恒的学习态度是非常重要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小秋slam实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值