【VINS-Mono】

这篇博客探讨了VINS-Mono系统中关于计算机视觉的部分,特别是IMU预积分过程。在`feature_tracker`包中,详细介绍了如何根据时间戳获取IMU数据并进行预积分。`vins_estimator`包中,重点讲解了`getMeasurements`、`processIMU`(包括误差项和协方差、雅可比矩阵的更新)以及`IntegrationBase`。此外,还涉及了`pose_graph`包内的因子图构建、图像处理和全局优化。初始化阶段,IMU协方差矩阵从完全信任IMU约束开始,随着更多数据到来,不确定性逐渐增加。最后,`relativePose`和`GlobalSFM::construct`用于初始化和全局稀疏特征重建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

feature_tracker package

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小秋slam实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值