逐函数详细讲解ORB_SLAM2算法和C++代码|Tracking.cpp|StereoInitialization|1-5

这篇博客深入解析ORB_SLAM2算法中的StereoInitialization过程,详细介绍如何对双目相机进行初始化。初始化涉及检查特征点数量、设置当前帧位姿、创建初始关键帧、关联地图点到关键帧,并将关键帧添加到地图。这一系列操作确保SLAM系统进入OK状态,为后续跟踪、定位和地图构建奠定基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在ORB-SLAM2算法中,StereoInitialization()函数是用于对双目相机进行立体视觉初始化。在立体视觉SLAM中,初始化是确定初始关键帧、地图点以及相机位姿的关键步骤。这个函数在成功初始化后,将SLAM系统状态设置为OK,为后续的跟踪、定位和地图构建做好准备。以下是这个函数中的主要操作:

  1. 检查当前帧的特征点数量:
    if(mCurrentFrame.N>500)
    这个条件检查当前帧(mCurrentFrame)是否包含足够的特征点(大于500)。如果特征点数量过少,初始化过程可能无法成功。

  2. 设置当前帧的位姿:
    mCurrentFrame.SetPose(cv::Mat::eye(4,4,CV_32F));
    这一行代码将当前帧的位姿设置为单位矩阵,表示将当前帧作为世界坐标系的原点。

  3. 创建初始关键帧:
    KeyFrame* pKFini = new KeyFrame(mCurrentFrame,mpMap,mpKeyFrameDB);
    这一行代码使用当前帧、地图和关键帧数据库来创建一个新的关键帧(pKFini)。

  4. 将关键帧添加到地图中:
    mpMap->AddKeyFrame(pKFini);
    这一行代码将新创建的关键帧(pKFini)添加到地图(mpMap)中。

  5. 创建地图点并关联到关键帧:
    这个循环遍历当前帧的所有特征点,为每个具有有效深度的特征点创建一个地图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小秋slam实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值