使用FAST方法检测特征点,然后计算这些特征点的ORB描述子,并使用暴力匹配方法找到匹配的特征点

这段代码实现了一种图像处理流程,包括使用FAST算法检测特征点,通过ORB计算特征点描述子,接着用汉明距离进行暴力匹配找到描述子的最佳匹配,并展示匹配结果。关键步骤涉及特征点检测、ORB描述子计算和暴力匹配方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
这段代码主要做了以下几件事情:

  1. 读取两幅图像
  2. 使用FAST方法找出图像中的特征点
  3. 手写ORB方法计算特征点的描述子
  4. 使用汉明距离(Hamming distance)进行描述子的匹配
  5. 显示匹配的结果

下面我们会逐行解释每一句代码:

  • 包含头文件:这一部分包含了所有需要的库。

  • ComputeORB 函数:该函数接受输入图像、FAST检测器找到的特征点,然后计算每个特征点的ORB描述子。ORB描述子是一种快速的特征描述子,由于它的二值性质,可以使用Hamming距离进行匹配。

  • BfMatch 函数:这个函数接收两组描述子,然后进行暴力匹配(Brute-force matching),找到最佳匹配的描述子。

  • main 函数:该函数首先读取两幅图像,并将它们缩小到原始大小的一半。然后使用FAST方法在每幅图像上找出特征点,并显示它们。

    在找到特征点后,代码计算每个特征点的ORB描述子。然后,使用BfMatch函数找到匹配的描述子。最后,使用cv::drawMatches函数显示匹配的结果。

  • ComputeORB 函数:该函数首先检查特征点是否在图像边界以内。如果特征点在图像边界之外,则不计算描述子。然后,计算每个特征点的m01和m

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小秋slam实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值