Python Pandas 高级数据操作 数据透视表

本文详细介绍了如何使用Python的Pandas库创建数据透视表,包括自定义聚合函数、多个聚合操作、填充缺失值、添加小计以及处理多索引和多值的情况。通过pivot_table函数和groupby、apply、agg等方法,实现复杂的数据分析和汇总。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、创建数据透视表

使用pivot_table方法可以创建数据透视表。这个方法非常灵活,允许指定不同的聚合函数、行列索引和值。

参考文档:Python pandas.DataFrame.pivot_table函数方法的使用

数据根据日期和类型进行了汇总,并计算了每个日期和类型组合的值总和。如下,

import pandas as pd

# 示例数据
data = {
    'Date': ['2020-01-01', '2020-01-01', '2020-01-02', '2020-01-02'],
    'Type': ['A', 'B', 'A', 'B'],
    'Value': [10, 15, 5, 7]
}
df = pd.DataFrame(data)

# 创建数据透视表
pivot = pd.pivot_table(df, values='Value', index='Date', columns='Type', aggfunc='sum')

print(pivot)

2、自定义聚合函数

可以使用自定义函数来执行更复杂的聚合操作。通常通过 groupby 方法结合 apply 函数来实现。apply 函数可以对分组数据应用任意函数,从而实现灵活的数据处理。

需要定义一个自定义函数,该函数将对分组的数据进行操作。这个函数可以执行任何计算,从简单的数学运算到复杂的逻辑。可以使用 groupby 方法对数据进行分组,并使用 apply 方法应用自定义函数。

参考文档:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值