1、创建数据透视表
使用pivot_table
方法可以创建数据透视表。这个方法非常灵活,允许指定不同的聚合函数、行列索引和值。
参考文档:Python pandas.DataFrame.pivot_table函数方法的使用
数据根据日期和类型进行了汇总,并计算了每个日期和类型组合的值总和。如下,
import pandas as pd
# 示例数据
data = {
'Date': ['2020-01-01', '2020-01-01', '2020-01-02', '2020-01-02'],
'Type': ['A', 'B', 'A', 'B'],
'Value': [10, 15, 5, 7]
}
df = pd.DataFrame(data)
# 创建数据透视表
pivot = pd.pivot_table(df, values='Value', index='Date', columns='Type', aggfunc='sum')
print(pivot)
2、自定义聚合函数
可以使用自定义函数来执行更复杂的聚合操作。通常通过 groupby 方法结合 apply 函数来实现。apply 函数可以对分组数据应用任意函数,从而实现灵活的数据处理。
需要定义一个自定义函数,该函数将对分组的数据进行操作。这个函数可以执行任何计算,从简单的数学运算到复杂的逻辑。可以使用 groupby 方法对数据进行分组,并使用 apply 方法应用自定义函数。
参考文档: