如有错误,恳请指出。
参考网上资料,对一些经典论文进行快速思路整理
文章目录
1. SA-SSD
paper:《Structure Aware Single-stage 3D Object Detection from Point Cloud》(2020CVPR)
结构图:
问题:
One-stage的算法网络为的是追求速度与精度的权衡,但是利用3d稀疏卷积对特征进行下采样后的特征无法避免地丢失了空间的信息,不能充分利用点云中的结构信息,降低了定位精度。此外,预测的置信度与预测框之间存在不一致问题。不过这个问题一直存在,包括在two-stage里面。不一致问题出现的关键在于分类置信度相关的当前位置使用的特征图一般与预测边界框所在的位置存在偏移。目前为止我看见过两种解决的办法:1)利用3d iou来作为分类置信度的监督值(代表方法:PartA2);2)增加一个iou分支,将分类得分与iou预测相乘,作为最后的objectness值,利用nms进行筛选(代表方法:STD)。
SA-SSD为了解决这两个问题,前者提出了利用辅助损失,利用两个point-level的