论文速度系列三:SA-SSD、CIA-SSD、SE-SSD

3D目标检测:SA-SSD, CIA-SSD, SE-SSD解析
本文介绍了SA-SSD、CIA-SSD和SE-SSD三种3D目标检测算法,重点讨论了它们如何解决单阶段检测器的定位精度和分类置信度匹配问题,以及在点云处理上的优化策略,如结构感知、IoU感知和自我蒸馏等技术。

如有错误,恳请指出。


参考网上资料,对一些经典论文进行快速思路整理

1. SA-SSD

paper:《Structure Aware Single-stage 3D Object Detection from Point Cloud》(2020CVPR)
结构图:
在这里插入图片描述

问题:
One-stage的算法网络为的是追求速度与精度的权衡,但是利用3d稀疏卷积对特征进行下采样后的特征无法避免地丢失了空间的信息,不能充分利用点云中的结构信息,降低了定位精度。此外,预测的置信度与预测框之间存在不一致问题。不过这个问题一直存在,包括在two-stage里面。不一致问题出现的关键在于分类置信度相关的当前位置使用的特征图一般与预测边界框所在的位置存在偏移。目前为止我看见过两种解决的办法:1)利用3d iou来作为分类置信度的监督值(代表方法:PartA2);2)增加一个iou分支,将分类得分与iou预测相乘,作为最后的objectness值,利用nms进行筛选(代表方法:STD)。

SA-SSD为了解决这两个问题,前者提出了利用辅助损失,利用两个point-level的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clichong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值