YOLOv8 新世代 NMS 算法:DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS、SIoU-NMS、Soft-NMS 完全解析

本文深入解析YOLOv8中引入的新一代NMS算法,包括DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS、SIoU-NMS和Soft-NMS,详述其原理、特点及如何在YOLOv8中应用,以提升目标检测的准确性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv8 新世代 NMS 算法:DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS、SIoU-NMS、Soft-NMS 完全解析 🎯

引言

目标检测一直是计算机视觉领域的重要任务,而非极大值抑制(NMS)是目标检测中的一个关键步骤,用于去除多余的边界框并提高检测的准确性。YOLOv8(You Only Look Once Version 8)作为一款领先的目标检测模型,引入了多种新一代 NMS 算法,如DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS、SIoU-NMS以及Soft-NMS。本文将深入研究这些新型 NMS 算法的原理、特点以及如何在YOLOv8中应用,以帮助读者更好地理解和利用这些创新技术。

什么是 NMS?

NMS,或称非极大值抑制,是目标检测中的一个关键步骤。它的主要目标是减少检测结果中的冗余边界框,只保留具有最高置信度的边界框,以提高检测的准确性和效率。NMS 的工作原理是,对于每个检测框,计算其与其他检测框的IoU(交并比),如果IoU高于阈值,则保留置信度较高的框,否则将其抑制。

新一代 NMS 算法

YOLOv8 引入了一系列新一代 NMS 算法,旨在进一步提高检测准确性。这些算法包括:

  • DIoU-NMS(Distance Intersection over Union NMS)
  • CIoU
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哒佬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值