YOLOv8 新世代 NMS 算法:DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS、SIoU-NMS、Soft-NMS 完全解析 🎯
引言
目标检测一直是计算机视觉领域的重要任务,而非极大值抑制(NMS)是目标检测中的一个关键步骤,用于去除多余的边界框并提高检测的准确性。YOLOv8(You Only Look Once Version 8)作为一款领先的目标检测模型,引入了多种新一代 NMS 算法,如DIoU-NMS、CIoU-NMS、EIoU-NMS、GIoU-NMS、SIoU-NMS以及Soft-NMS。本文将深入研究这些新型 NMS 算法的原理、特点以及如何在YOLOv8中应用,以帮助读者更好地理解和利用这些创新技术。
什么是 NMS?
NMS,或称非极大值抑制,是目标检测中的一个关键步骤。它的主要目标是减少检测结果中的冗余边界框,只保留具有最高置信度的边界框,以提高检测的准确性和效率。NMS 的工作原理是,对于每个检测框,计算其与其他检测框的IoU(交并比),如果IoU高于阈值,则保留置信度较高的框,否则将其抑制。
新一代 NMS 算法
YOLOv8 引入了一系列新一代 NMS 算法,旨在进一步提高检测准确性。这些算法包括:
- DIoU-NMS(Distance Intersection over Union NMS)
- CIoU