自动化测试中的陷阱及避坑指南,有助于提升测试效率和降低维护成本,从而提高了项目质量和降低了项目缺陷率,有效地避免资源浪费。如果不能及时解决这些问题,往往会造成测试效率降低和测试用例覆盖率不足,直接影响项目质量和开发进度,导致维护成本飙升,影响项目盈利。
因此,及时解决自动化测试中的问题迫在眉睫,常见的问题及避坑指南如下:

1、不明确测试目标和范围
在自动化测试的实际操作中,往往会把每个测试都进行自动化,这样往往需要占用大量时间为其开发框架或脚本,浪费了宝贵的资源,并不是明智的选择。
首先并不是所有代码都需要频繁进行测试,如果不明确测试目标,就无法确定测试用例的覆盖范围,也无法评估测试效果的好坏。
避坑指南:
(1)明确测试的功能需求、性能需求、安全需求等方面的目标,以此编写测试用例。
(2)测试目标需要明确、具体、可操作。
(3)拒绝全部自动化测试,定义测试的范围。

2、过度依赖自动化
自动化测试过程中,往往依赖固定的自动化脚本,这样可能导致用例无法适应需求变更,造成用例的僵化和场景遗漏以及自动化脚本的维护成本增加。
避坑指南:
(1)建立 “手动先行,自动补充” 的测试流程。即先通过手动测试进行场景覆盖,再将高频用例转化为自动化脚本。
(2)自动化测试中需不断修正测试用例,避免过度依赖自动化测试。
(3)定期安排手动探索性测试,发现自动化脚本未覆盖的缺陷。

3、自动化测试工具选择错误
业内自动化测试工具非常多,在实际的工具选择中往往会出现如技术栈错配、需求不适配、忽视扩展性等问题,这些错误往往会导致投入产出比失衡、团队信心受挫。
其实在选择自动化测试工具时,我们需根据团队的需求和技术背景,综合考虑工具的功能、易用性以及性能等方面,以便筛选出符合自己团队的工具。
避坑指南:
(1)制作决策矩阵,对比现有工具与候选工具的功能覆盖、维护成本等。
(2)可以在小范围中验证新工具的效果,评估投入产出比。
(3)注意工具的稳定性和兼容性,避免出现工具崩溃或无法兼容的情况。

4、投资回报率和维护成本
在实际操作中,有些项目可能会采购昂贵的自动化测试工具(如 License 年费超 10 万),但仅用于简单点击测试。这样虽然年节省人力成本不足 5 万,但投入产出比严重失衡。还容易出现:前端框架频繁升级,导致 Selenium 脚本元素定位失效,每周需耗费大量时间进行修复,远超人工测试耗时。
避坑指南:
(1)按实际需求选择工具,可以用开源工具替代高价工具。
(2)需要定期清算成本,工具投入≤年人力成本 15%。
(3)设置维护成本阈值,如果周故障率>5% 重构。

5、测试用例设计不合理
在自动化测试场景中,往往会出现测试用例设计不合理的问题,如用例仅覆盖登录主流程,未细分验证码错误、账号冻结等异常分支场景;以及无效数据污染问题、断言逻辑漏洞、结构设计缺陷等问题。
避坑指南:
(1)测试用例需要充分覆盖业务场景和功能,优先覆盖 “业务价值高的场景”和“高风险异常路径”。
(2)每个测试数据应触发独特的业务逻辑分支,避免无效重复。
(3)断言必要业务结果,而非实现细节。如断言 “订单创建成功” 而非 “数据库插入记录”。

在技术工具层面,我们可以借助 AI 提升测试效率,如CoCode旗下的Co-Project智能项目管理中的自动生成测试用例、测试脚本和测试报告功能。其使用AI,自动生成每个需求多维度测试用例和测试脚本,提高测试覆盖度和全面性,保障测试质量,减轻测试人员工作量。

综上所述,我们在进行自动化测试时,需要从以上五个方面全面防止和避开陷阱,以便提高自动化测试效率。