规模估算准确性验证的常见步骤(附注意事项)

       软件规模估算准确性验证有助于确保项目资源分配合理、进度规划可控,能够有效减少成本超支与延期风险;通过挖掘估算偏差原因,进一步优化估算方法,提升组织项目管理能力与交付成功率。未经验证的软件规模估算可能导致预算失控、进度延误以及质量下降等一系列问题,这一系列连锁反应会进一步加剧团队压力,形成资源错配的恶性循环,最终可能导致项目交付失败。

       因此软件规模估算准确性验证至关重要,以下是常见的6大验证步骤:

规模估算准确性验证的常见步骤(附注意事项)
规模估算准确性验证的常见步骤(附注意事项)

      1、明确估算基准(确定验证标准)

      首先,我们需要明确验证目标,界定验证范围,并确立统一的验证标准和估算单位。

      我们需要明确项目估算的允许范围,确保估算文档表述清晰、无歧义。同时,建立统一的验证标准,以便对估算结果进行可量化的对比。在此过程中,可以借鉴国际标准(如IFPUG功能点、COSMIC功能点),以避免混合使用多种不可比的单位。

       注意事项:

目标需具体可量化,避免模糊描述,应明确偏差阈值(如 ±20%)、度量单位(如功能点、代码行)等。

排除干扰因素,例如非功能性需求对规模估算的干扰,或者单独计算这些因素的权重。

与相关方达成共识,确保项目经理、估算师、业务方对目标和范围无歧义。

       2、收集实际数据

       我们需要收集估算项目的实际数据和估算的交付数据,并选择合适的验证点。这些验证点应在需求足够稳定、规模能够被较准确测量之后确定。常见的验证点包括详细设计完成、关键功能模块编码完成、用户故事/功能开发完成以及系统测试完成。

       一般来说,收集估算数据主要包括估算功能点数量、代码行数以及工作量等;而实际数据则包括交付的实际功能点、实际代码行以及实际工作量等。同时,需要记录这些数据对应的项目背景信息,如项目类型、规模以及复杂度等。

       注意事项:

收集数据需完整,避免遗漏关键信息,如估算时的假设条件等。

估算与实际数据的度量标准必须统一。

实际数据需由项目负责人确认(如实际功能点需通过独立评审)。

收集实际数据
收集实际数据

       3、选择合适的验证方法

      我们需要根据估算目标、数据特点以及项目类型,选择科学的验证方法,以确保估算验证结果的可靠性。常见的方法包括偏差分析、趋势分析、统计检验以及基准对比等。在此过程中,可以从这些方法中选择适配的工具,或者组合使用多种方法来提升验证的可信度。

      若项目数据为'连续型'(如功能点数量),我们可以采用偏差率计算((实际值 - 估算值)/ 估算值 × 100%)以及平均绝对偏差(MAD)等方法;若数据为'离散型'(如'估算准确/不准确'),则可采用卡方检验等统计方法。

       注意事项:

验证方法的选择需要与项目的规模相匹配。对于小项目(100功能点以内),可以采用简单的偏差分析;而对于大型项目(1000功能点以上),则需要结合统计检验(如t检验)来判断偏差是否显著。

确保验证方法在整个组织或项目中保持一致,以便进行横向和纵向比较。

合适的验证方法
合适的验证方法

       4、执行比较并量化偏差

        在预定义的验证点使用选定的方法,将估算数据与实际数据量化对比,明确偏差的大小和方向(高估 / 低估),我们可以通过图表(如偏差趋势图、直方图)的方式,更直观呈现结果。

       注意事项:

确保“实际值”的测量是准确、客观和可追溯。

严格区分范围变更,对相同范围的需求,估算值偏离实际值。

记录原始数据,包括估算值、实际值、计算得出的偏差值(百分比、增长因子等)等关键信息。

       5、分析偏差原因

       需要我们深入挖掘导致偏差的底层原因,这是我们进行估算验证最有价值的部分,为我们后期改进提供依据。我们在分析过程中,不能停留喜爱在表面数字,要深入挖掘“为什么”使用如“5 Whys”、鱼骨图等方法。

       需要分类进行梳理原因:需要确认需求是否模糊、不完整; 使用的估算方法(专家判断、类比、参数模型)是否适合本项目;数据是否客观以及估算人员是否具备足够经验和知识等,我们需要全方位地进行归因分析。

       注意事项:

分析应基于事实和数据,保持客观公正,避免指责个人。

需要深入分析原因,避免表面归因。

需要区分可控因素(如估算方法不当)和 不可控因素(如突发技术难题)。

分析原因
分析原因

       6、确定改进方案 采取纠正措施

       我们根据偏差分析的原因编写验证报告,该报告应包含目标、范围、数据、计算结果以及偏差原因等内容。同时,基于这些原因提出具体的改进措施,并将报告最终纳入组织过程资产。需要采取行动来改进当前的估算过程,推动组织估算能力的持续提升。

      注意事项:

报告需清晰易懂:面向不同受众(如管理层关注结论,估算师关注方法细节)调整内容深度,用图表替代冗长文字。

改进措施需具体可落地:

     针对需求模糊导致估算偏差,可制定 “需求评审 Checklist”,要求关键功能需经客户签字确认;

      针对估算方法不适用,可组织培训统一功能点计数规则。

     如果使用了参数模型,根据分析结果校准模型系数或调整复杂度权重。

建立 反馈闭环:将改进措施纳入项目管理流程,并约定下次验证的时间,跟踪措施有效性。

     为了进一步提高估算的准确性,可以使用AI估算工具,如Co-Project智能项目管理平台的AI自动估算功能/CoCode软件成本造价工具,通过设置调整因子(软件估算时机、软件因素、开发因素)、调整功能点值(复杂度、修改类型、复用程度),多角度多层级地调整影响因子,从而通过需求一键自动估算项目规模、生成产品报价,提高项目科学估算的准确性。使用此功能能够节省15-25%的开发成本。

AI自动估算功能/CoCode软件成本造价工具
AI自动估算功能/CoCode软件成本造价工具

       总之,以上是规模估算准确性验证6大常见步骤,我们根据步骤及注意事项来逐步、客观验证,从而 有助于提高验证的准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值